Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Истечение через малые отверстия в тонкой стенке при постоянном напоре




Читайте также:
  1. I. средняя скорость; II. мгновенная скорость; III. вектор скорости, выраженный через проекции на оси; IV. величина (модуль) скорости.
  2. P-n переход с тонкой базой
  3. АТМИЧЕСКОЕ ЕДИНСТВО ЧЕРЕЗ СЛУЖЕНИЕ
  4. Бесконечно малые и бесконечно большие функции
  5. Бесконечно малые функции. Арифметические действия с бесконечно малыми (доказательство)
  6. Вводи звук своего имени и, через этот звук, все другие звуки.
  7. Включение реле через промежуточные быстронасыщающиеся трансформаторы тока.
  8. Вопрос 1.6.3. Регулирование деятельности работодателя через региональные рынки услуг по охране труда
  9. Вопрос 2. В каком случае бесконечно малые α (х) и β(х) называются бесконечно малыми одного порядка в точке х0?
  10. Выражение векторного произведения через координаты

Рассмотрим большой резервуар с жидкостью под давлением Р0, имеющий малое круглое отверстие в стенке на достаточно большой глубине Н0 от свободной поверхности (рис.5.1).

Рис. 5.1. Истечение из резервуара через малое отверстие

Жидкость вытекает в воздушное пространство с давлением Р1. Пусть отверстие имеет форму, показанную на рис.5.2, а, т.е. выполнено в виде сверления в тонкой стенке без обработки входной кромки или имеет форму, показанную на рис.5.2, б, т.е. выполнено в толстой стенке, но с заострением входной кромки с внешней стороны. Струя, отрываясь от кромки отверстия, несколько сжимается (рис.5.2, а). Такое сжатие обусловлено движением жидкости от различных направлений, в том числе и от радиального движения по стенке, к осевому движению в струе.

Рис. 5.2. Истечение через круглое отверстие

Степень сжатия оценивается коэффициентом сжатия.

где Sс и Sо - площади поперечного сечения струи и отверстия соответственно; dс и dо - диаметры струи и отверстия соответственно.

Скорость истечения жидкости через отверстие такое отверстие

где Н - напор жидкости, определяется как

φ- коэффициент скорости

где α - коэффициент Кориолиса;
ζ- коэффициент сопротивления отверстия.

Расход жидкости определяется как произведение действительной скорости истечения на фактическую площадь сечения:

Произведение ε и φ принято обозначать буквой и называть коэффициентом расхода, т.е. μ = εφ.

В итоге получаем расход

где ΔР - расчетная разность давлений, под действием которой происходит истечение.

При помощи этого выражения решается основная задача - определяется расход.

Значение коэффициента сжатия ε, сопротивления ζ, скорости φ и расхода μ для круглого отверстия можно определить по эмпирически построенным зависимостям. На рис.5.3 показаны зависимости коэффициентов ε, ζ и μ от числа Рейнольдса, подсчитанного для идеальной скорости

где ν - кинематическая вязкость.

Рис. 5.3. Зависимость ε, φ и от числа Reu Рис. 5.4. Инверсия струй

При истечении струи в атмосферу из малого отверстия в тонкой стенке происходит изменение формы струи по ее длине, называемое инверсией струи (рис.5.4). Обуславливается это явление в основном действием сил поверхностного натяжения на вытекающие криволинейные струйки и различными условиями сжатия по периметру отверстия. Инверсия больше всего проявляется при истечении из некруглых отверстий.


Дата добавления: 2015-01-29; просмотров: 9; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты