КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Классификация оптических волокон.Все оптические волокна делятся по количеству мод распространения на многомодовые и одномодовые. Для всех типов волокон, применяемых в линиях связи, диаметр кварцевой оболочки имеет стандартный размер 125+1 мкм. Номинальный диаметр сердцевины у многомодовых волокон 50 или 62.5 мкм. Диаметр сердцевины у одномодовых волокон может меняться в зависимости от типа волокна в пределах 7-9 мкм (рис. 1.4). Одномодовые волокна применяются в транспортных сетях всех трех уровней: магистральном, уровне распределения и уровне доступа. Многомодовые волокна применяются в локальных вычислительных сетях и частично в транспортных сетях на уровне доступа. Существует два стандарта таких волокон, отличающиеся диаметром сердцевины.
Рис.1.5. Геометрические параметры одномодовых и многомодовых волокон. В волоконно-оптических линиях связи (ВОЛС) чаще всего используются следующие стандарты волокон: - многомодовое градиентное волокно 50/125 (рис. 1.6б); - многомодовое градиентное волокно 62.5/125 (рис. 1.6б); - одномодовое ступенчатое волокно 8-10/125 (рис. 1.6в); - одномодовое волокно со смещенной дисперсией 8-10/125 (рис. 1.6г); - одномодовое волокно с ненулевой смещенной дисперсией (по профилю показателя преломления это волокно схоже с предыдущим типом волокна).
Рис. 1.6. Стандарты ОВ. Рекомендуемые параметры многомодовых ОВ приведены в таблице 1.1.
Таблица 1.1.
Одномодовое волокно со ступенчатым профилем показателя преломления (рис. 1.15) называют стандартным Standard Fiber (SF). Это волокно оптимизировано для второго окна прозрачности (1260-1360 нм). Его длина волны нулевой дисперсии составляет l0D ~ 1.35 мкм. Стандартные ОВ имеют дисперсию на l = 1310 нм менее 3.5 пс/(нм·км), а на l = 1550 нм их дисперсия возрастает до 18 пс/(нм·км), хотя затухание при этом уменьшается до 0.2 дБ/км и они могут с успехом использоваться на этой длине волны. При этом длина участка регенерации обычно ограничивается дисперсией.
С целью оптимизации дисперсионных параметров волокон на длине волны 1.55 мкм, на которой кварцевые ОВ имеют минимальное затухание, были разработаны градиентные одномодовые ОВ. Усложняя профиль показателя преломления (рис. 1.8) и делая его форму близкой к треугольной, получили волокна, имеющие длину волны нулевой дисперсии вблизи 1550 нм. Такие ОВ получили название ОВ со смещенной дисперсией (Dispersion Shifted Fiber - DSF).
Рис.1.8. Профили показателей преломления ОВ со смещенной дисперсией. Эти ОВ имеют дисперсию на λ = 1550 нм менее 3.5 пс/(нм*км), а на λ = 1310 нм до 18 пс/(нм*км).
Рис. 1.9. Зависимость хроматической дисперсии в одномодовых ОВ от длины волны. Еще один вид одномодовых ОВ - ОВ с ненулевой смещенной дисперсией (Non Zero Dispersion Shifted Fiber - NZDSF). Эти ОВ были разработаны специально для систем спектрального уплотнения (DWDM). Волокна NZDSF оптимизированы таким образом, что длина волны нулевой дисперсии у них вынесена за пределы полосы пропускания эрбиевого оптического усилителя (такие усилители могут использоваться только в начале или в конце линии; выходная мощность составляет 10-500мВт (10-27дБм)). Характеристики этих волокон приведены в таблице 1.2. Таблица 1.2.
В таблице 1.3. приведены рекомендации МСЭ по параметрам волокон различных типов. Таблица 1.3.
В таблицах 1.2 и 1.3 присутствует параметр - кабельная длина волны отсечки. Это длина волны отсечки волокна, уложенного в кабель. Для волокна в кабеле длина волны отсечки меньше, чем для «прямого» волокна, то есть одномодовый режим передачи наступает раньше. Типы одномодовых волокон отличаются друг от друга только формой профиля показателя преломления (рис. 1.10) и, соответственно, дисперсионными характеристиками.
Рис.1.10. Профили показателя преломления в одномодовых волокнах. Основные типы одномодовых волокон, применяемых в линиях связи, нормируются международными стандартами ITU-T Rec. G. 652-G. 655: • G.652: волокна с несмещенной дисперсией (SM волокна) с длиной волны нулевой дисперсии и длиной волны отсечки в районе 1310 нм. • G.653: волокна со смещенной дисперсией (DS волокна) с длиной волны нулевой дисперсии в районе 1550 нм и длиной волны отсечки в районе 1310 нм. • G.654: волокна с несмещенной дисперсией (SM волокна) с длиной волны нулевой дисперсии в районе 1310 нм и длиной волны отсечки в районе 1550 нм. • G.655: волокна со смещенной ненулевой дисперсией (NZDS волокна), обладающие малой дисперсией (0.1-6 пс/нм.км) в диапазоне длин волн 1530-1565 нм. • G.656: волокна с ненулевой дисперсией для систем грубого уплотнения по длинам волн (CWDM – Coarse Wavelength Division Multiplexing - большое расстояние между спектральными каналами – 20 нм). Существует также несколько специальных типов одномодовых волокон применяемых в волоконно-оптических устройствах: • Волокна для компенсации дисперсии (DC – Dispersion Compensating), применяемые в модулях компенсации дисперсии. • Волокна с примесью редкоземельных элементов, применяемые в оптических усилителях, например, в EDFA – Erbium Doped Fiber Amplifier. • Волокна, сохраняющие состояние поляризации излучения (РМ – Polarization Maintaining), применяемые в гироскопах, поляризационных делителях и смесителях. • Дырчатые волокна (Holey Fiber), применяемые в компенсаторах дисперсии, в оптических шнурах, в нелинейных элементах.
Рис. 1.11. Профиль показатель преломления дырчатого волокна. Помимо рассмотренных ОВ существуют также одномодовые ОВ со сглаженной дисперсией Cutoff Shifted Fiber (CSF). В этих волокнах используется четырехслойная оболочка, что позволяет добиться почти плоской и близкой к нулевой дисперсионной характеристики (|Dх| = 1-6 пс/км/нм) в диапазоне длин волн от 1300 до 1650 нм. При этом они имеют сниженный коэффициент затухания благодаря чисто кварцевой сердцевине и увеличенного диаметра модового поля. Волокна со сглаженной дисперсией используются только на длине волны 1550 нм для связи на большие расстояния без промежуточных линейных усилителей и регенераторов, преимущественно в подводных магистралях. Большой диаметр модового поля позволяет использовать большее усиление мощности без увеличения нелинейных искажений сигнала.
|