КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Физиологические механизмы развития силыВ развитии мышечной силы имеют значение: 1) внутримышечные факторы, 2) особенности нервной регуляции и 3) психофизиологические механизмы. Внутримышечные факторы развития силы включают в себя биохимические, морфологические и функциональные особенности мышечных волокон. • Физиологический поперечник, зависящий от числа мышечных волокон (он наибольший для мышц с перистым строением); • Состав (композиция) мышечных волокон, соотношение слабых и более возбудимых медленных мышечных волокон (окислительных, мало утомляемых) и более мощных высоко пороговых быстрых мышечных волокон (гликолитических, утомляемых); • Миофибриллярная гипертрофия мышцы - т.е. увеличение мышечной массы, которая развивается при силовой тренировке в результате адаптационно-трофических влияний и характеризуется ростом толщины и более плотной упаковкой сократительных элементов мышечного волокна - миофибрилл. (При этом окружность плеча может достигать 80 см, а бедра - 95 см и более). Нервная регуляция обеспечивает развитие силы за счет совершенствования деятельности отдельных мышечных волокон, двигательных единиц (ДЕ) целой мышцы и межмышечной координации. Она включает в себя следующие факторы: • Увеличение частоты нервных импульсов, поступающих в скелетные мышцы от мотонейронов спинного мозга и обеспечивающих переход от слабых одиночных сокращений их волокон к мощным тетаническим; • Активация многих ДЕ - при увеличении числа вовлеченных в двигательный акт ДЕ повышается сила сокращения мышцы; • Синхронизация активности ДЕ - одновременное сокращение возможно большего числа активных ДЕ резко увеличивает силу тяги мышцы; • Межмышечная координация - сила мышцы зависит от деятельности других мышечных групп: сила мышцы растет при одновременном расслаблении ее антагониста, она уменьшается при одновременном сокращении других мышц и увеличивается при фиксации туловища или отдельных суставов мышцами-антагонистами. Например, при подъеме штанги возникает явление натуживания (выдох при закрытой голосовой щели), приводящее к фиксации мышцами туловища спортсмена и создающие прочную основу для преодоления поднимаемого веса. 75Физиологические основы скоростно-силовых качеств (мощности) Мощность может быть увеличена за счет увеличения силы или-скорости сокращения мышц или обоих компонентов. Обычно наибольший прирост мощности достигается за счет увеличения мышечной силы. Внутри - и межмышечная координация также способствует увеличению скорости движения (мощности), так как при координированной работе мышц их усилия кооперируются, преодолевая внешнее сопротивление с большей скоростью. В частности, при хорошей межмышечной координации сократительное усилие одной мышцы (или группы мышц) лучше соответствует пику скорости, создаваемой предыдущим усилием другой мышцы (или группы мышц). Соответственно следующее усилие становится более эффективным. Скорость и степень расслабления мышц-антагонистов может быть важным фактором, влияющим на скорость движения. Если требуется.увеличить скорость движения, необходимо выполнять в тренировочных занятиях специфические движения (такие же, как в соревновательном упражнении) со скоростью, равной или превышающей ту, которая используется в тренируемом упражнении 76. Формы проявления, механизмы и резервы развития быстроты. Значительная часть спортивных упражнений не только требует максимально возможного развития скорости движений, но и происходит в условиях дефицита времени. Достижение успеха в подобных упражнениях возможно лишь при хорошем развитии физического качества быстроты. Формы проявления быстроты. Быстрота - это способность совершать движения в минимальный для данных условий отрезок времени. Различают комплексные и элементарные формы проявления быстроты. В естественных условиях спортивной деятельности быстрота проявляется обычно в комплексных формах, включающих скорость дви-гательных действий и кратковременность умственных операций, и в соче-тании с другими качествами. К элементарным формам проявления быстроты относятся следующие. - Общая скорость однократных движений (или время одиночных действий) - например, прыжков, метаний. - Время двигательной реакции - латентный (скрытый) период про-стой (без выбора) и сложной (с выбором) сенсомоторной реакции, реакции на движущийся объект (имеющее особенное значение в ситуационных упражнениях и спринте). - Максимальный темп движений, характерный, например, для спринтерского бега. Оценка времени двигательной реакции (ВДР) производится от мо-мента подачи сигнала до ответного действия. Она является одним из наи-более распространенных показателей при тестировании быстроты. Это время чрезвычайно мало для передачи возбуждения от рецепторов в нерв-ные центры и от них к мышцам. В основном оно затрачивается на проведе-ние и обработку информации в высших отделах мозга и поэтому служит показателем функционального состояния центральной нервной системы. У нетренированных лиц величина ВДР при движении пальцем в ответ на световой сигнал укорачивается с возрастом от 500 - 800 мс у детей 2 -3-х лет до 190 мс у взрослых людей. Для спортсменов характерны более короткие величины этой реакции: в среднем, 120 мс у спортсменов и 140 мс - у спортсменок. У высококвалифицированных представителей ситуационных видов спорта и бегунов на короткие дистанции эти величины еще меньше - порядка 110 мс, в отличие от бегунов-стайеров, показывающих 200 - 300 мс и более. При выполнении специализированных упражнений ВДР у высококвалифицированных спортсменов также очень невелико. Так, стартовое время (от выстрела стартового пистолета до ухода со старта) у бегунов-спринтеров, участников Олимпийских игр и чемпионатов мира, составляет, в среднем, при беге на 50 - 60 м 139 мс у мужчин и 159 мс у женщин, при беге на 100 м, соответственно, 150-160 мс и 190 мс. Знаменитый спринтер Бен Джонсон мог уходить со старта через 99,7 мс. По теоретическим расчетам ВДР, равное 80 - 90 мс, вообще составляет для человека предел его функциональных возможностей. Факторами, влияющими на ВДР, являются врожденные особенности человека, его текущее функциональное состояние, мотивации и эмоции, спортивная специализация, уровень спортивного мастерства, количество воспринимаемой спортсменом информации. Другим простым показателем быстроты является максимальный темп постукиваний пальцем за короткий интервал времени – 10 с, так называемый теппинг-тест. Взрослые лица производят 50 - 60 движений за 10 с, спортсмены ситуационных видов спорта и спринтеры - порядка 60 - 80 движений и более. Особым проявлением быстроты является скорость специализирован-ных умственных операций: при решении тактических задач высококва-лифицированные спортсмены затрачивают всего 0,5 - 1,0 с, а время приня-тия решения составляет у них половину этого периода. Физиологические механизмы развития быстроты. В основе проявления качества быстроты лежат индивидуальные осо-бенности протекания физиологических процессов в нервной и мышечной системах. Быстрота зависит от следующих факторов. - Лабильность - скорость протекания возбуждения в нервных и мы-шечных клетках. - Подвижность нервных процессов - скорость смены в коре боль-ших полушарий возбуждения торможением и наоборот. - Соотношение быстрых и медленных мышечных волокон в ске-летных мышцах. Уровень лабильности и подвижности нервных процессов определяет скорость восприятия и переработки поступающей информации, а лабиль-ность мышц и преобладание быстрых двигательных единиц (ДЕ) - скорость мышечного компонента быстроты (сокращения и расслабления мышцы, максимальный темп движений). В сложных ситуациях, требующих реакции с выбором, и при увеличении поступающей информации большое значение имеет пропускная способность мозга спортсмена - количество перерабатываемой информации за единицу времени. Величина ВДР прямо пропорционально нарастает с увеличением числа возможных альтернативных решений - до 8 альтернатив, а при большем их числе оно резко и непропорционально повышается. При осуществлении реакции на движущийся объект (РДО) большое значение приобретают явления экстраполяции, позволяющие предвидеть возможные траектории перемещения соперников или спортивных снаря-дов, что ускоряет подготовку ответных действий спортсмена. Это особенно необходимо, например, в хоккее, теннисе, стрельбе по летящим тарелкам и т. п. Способствуют этому и поисковые движения глаз: быстрота действий спортсмена здесь связана со скоростными возможностями мышц глазо-двигательного аппарата, без которых невозможно эффективно осуществ-лять следящие движения
77 Определение понятия Понятие "выносливость" употребляется в обыденной речи в очень широком смысле для того, чтобы охарактеризовать способность человека к продолжительному выполнению того или иного вида умственной или физической (мышечной) деятельности. Характеристика выносливости как двигательного физического качества (способности) человека относительна: она относится только к определенному виду деятельности. Иначе говоря, выносливость специфична - она проявляется у каждого человека при выполнении определенного, специфического вида деятельности. В зависимости от типа и характера выполняемой физической (мышечной) работы различают: 1. статическую и динамическую выносливость, т. е. способность длительно выполнять соответственно статическую или динамическую работу; 2. локальную и глобальную выносливость, т. е. способность длительно осуществлять соответственно локальную работу (с участием небольшого числа мышц) или глобальную работу (пи участии больших мышечных групп - более половины мышечной массы); 3. силовую выносливость, т. е. способность многократно повторять упражнения, требующие проявления большой мышечной силы; 4. анаэробную и аэробную выносливость, т. е. способность длительно выполнять глобальную работу с преимущественно анаэробным или аэробным типом энергообеспечения. В спортивной физиологии выносливость обычно связывают с выполнением таких спортивных упражнений, которые требуют участия большой мышечной массы (около половины и более всей мышечной массы тела) и продолжаются непрерывно в течение 2-3 мин и более благодаря постоянному потреблению организмом кислорода, обеспечивающего знергопродукцию в работающих мышцах преимущественно или полностью аэробным путем. Иначе говоря, в спортивной физиологии выносливость определяют как способность длительно выполнять глобальную мышечную работу преимущественно или исключительно аэробного характера. К спортивным упражнениям, требующим проявления выносливости, относятся все аэробные упражнения циклического характера, в частности легкоатлетический бег на дистанциях от 1500 м, спортивная ходьба, шоссейные велогонки, лыжные гонки на всех дистанциях, бег на коньках на дистанциях от 3000 м, плавание на дистанциях от 400 м и др. 78 Гибкость как физическое качество. Развитие гибкости Эффективность спортивной подготовки, а особенно в техническом компоненте во мне связана с важным свойством опорно-двигательного аппарата способности к мышечной релаксации - гибкостью. В профессиональной физической подготовке и спорте гибкость необходима для выполнения движений с большой и предельной амплитудой. Недостаточная подвижность в суставах может ограничивать проявление таких физических качеств как сила, быстрота реакции и скорости движений, выносливости, увеличивая при этом энергозатраты и, снижая экономичность работы организма, и зачастую приводит к серьёзным травмам мышц и связок. Сам термин "гибкость" обычно используется для интегральной оценки подвижности звеньев тела, т.е. этим термином пользуются в тех случаях, когда речь идёт о подвижности в суставе всего тела. Если же оценивается амплитуда движений в отдельных суставах, то принято говори о "подвижности" в них. В теории и методике физического воспитания гибкость рассматривается как морфункциональное свойство опорно-двигательного аппарата человека, определяющее пределы движений звеньев тела. Различают две формы проявления гибкости: активную, характеризуемую величиной амплитуды движений при самостоятельном выполнении упражнений благодаря собственным мышечным усилиям; пассивную, характеризуемую максимальной величиной амплитуды движении, достигаемой воздействии внешних сил, например, с помощью партнёра, либо отягощения и т.п. В пассивных упражнениях на гибкость достигается большая, чем в активных упражнений амплитуда движений. Разницу между показателями активной и пассивной гибкости называют резервной напряженностью или “запасом гибкости”. Различают также общую и специальную гибкость. Общая гибкость характеризует подвижность во всех суставах тела и позволяет выполнять разнообразные движения с большой амплитудой. Специальная гибкость - предельная подвижность в отдельных суставах, определяющая эффективность спортивной и профессиональной деятельности. Развивают гибкость с помощью упражнений на растягивание мышц и связок. Различают динамические, статические, а также смешанные статодинамические упражнения на растягивание. Зависит проявление гибкости от многих факторов и, прежде всего, от строения суставов, эластичности свойств связок, сухожилий мышц, силы мышц, формы суставов, размеров костей, a т также от нервной регуляции тонуса мышц, С ростом мышц и связок гибкость увеличивается. Отражают подвижность анатомические особенности связочного аппарата. Причём мышцы это тормоз активных движении Мышцы плюс связочный аппарат и суставная сумка, в которую заключены концы костей и связок, это тормоза пассивного движения и, наконец, кости - это ограничитель движения. Чем толще связки и суставная сумка, тем больше ограничена подвижность сочленяющихся сегментов тела. Кроме того, размах движений лимитирован напряжением мышц антагонистов. Поэтому проявление гибкости зависит не только от эластичности мышц, связок, формы и особенностей сочленяющихся суставных гюверхностей, но и от способности человека сочетать произвольное расслабление растягиваемых мышц с напряжением мышц, производящих движение, т.е. от совершенства мышечной координации. Чем выше способность мышц антагонистов к растяжению, тем меньшее сопротивление они оказывают при выполнении движений, и тем "легче" выполняются эти движения. Недостаточная подвижность в суставах, связана с несогласованной работой мышц вызывает “крепощение” движений, что затрудняет процесс освоения двигательных навыков. К снижению гибкости может привести систематическое, или на отдельных этапах подготовки, применения силовых упражнений, если в тренировочный процесс включаются упражнения на растягивание. Проявление гибкости в той или иной степени зависит и от общего функционального состояния организма, и от внешних условий времени суток, температуры мышц и окружающей среды, степени утомления. Обычно до 8-9 часов утра гибкость несколько снижена. Однако, тренировка в утренние часы весьма эффективна. В холодную погоду и при охлаждении тела гибкость снижается при повышении температуры среды и тела - увеличивается. Утомление также ограничивает амплитуду активных движений и растяжимость мышечно-связочного аппарата. Касаясь возрастного аспекта проявления гибкости можно отметить, что гибкость зависит от возраста. Обычно подвижность крупных звеньев тела постепенно увеличивается до 13-14 лет, объясняется тем, что в этом возрасте мышечно-связочный аппарат более эластичен и растяжим. В возрасте от 13-14 лет наблюдается стабилизация развития гибкости, и, как правило, к 16-17 годам стабилизация заканчивается, происходит остановка развития, а затем имеет устойчивую тенденцию к снижению. Вместе с тем, если после 13-14 лет не выполнять упражнения растягивания, то гибкость начнёт снижаться уже в юношеском возрасте. И наоборот, практика показывает что даже в возрасте 40-50 лет регулярные занятия с применением разнообразных средств и методов гибкость повышается. Даже выше уровень, чем в юные годы. Гибкость зависит и от пола. Так подвижность в суставах у девушек выше, чем у юношей примерно на 20-30%. Процесс развития гибкости индивидуализирован. Развивать и поддерживать гибкость необходимо постоянно. Методика и методы развития гибкости Упражнения, направленные на развитие гибкости основаны на выполнении разнообразных движений: сгибания-разгибания, наклонов и поворотов, вращении и махов. Такие упражнения могут вполняться лежа самостоятельно или с партнёром, с отягощениями и тренажёрами, у гимнастической стенки, с гимнастическими палками, скакалками. Развитию активной гибкости способствуют самостоятельно выполняемые упражнения. Выполнение упражнений на растягивание с относительно большими весами увеличивает пассивную гибкость. Пассивная гибкость в 1.5 - 2.0 раза быстрее развивается, чем активная. Если перед нами стоит задача увеличения гибкости, то упражнения на растягивание необходимо выполнять ежедневно. Упражнения на гибкость должны выполняться во всех частях тренировочного занятия. Нежелательное снижение сократительной способности мышц от силовых упражнений можно преодолеть тремя методическими приёмами: 1. Последовательное использование упражнений на силу и гибкость, (сила + гибкость). 2. Поочерёдным применением упражнений на силу и гибкость (сила + гибкость + сила) в течение одного тренировочного занятия. 3. Одновременным (совмещённым) развитием силы и гибкости в процессе выполнения силовых упражнений. Следует всегда помнить, что растягиваться можно лишь после хорошей разминки и при этом у Вас не должно быть никаких сильных болевых ощущений. Одним из наиболее принятых методов развития гибкости, является метод многократного растягивания. Этот метод основан на свойстве мышц растягиваться больше при многократных повторениях, упражнения с постепенным увеличением размаха движений. Количество повторений упражнений меняется, в зависимости от характера и направленности упражнения на развитие подвижности в том или ином суставе, темпа движений, возраста и пола занимающихся. Пределом оптимального числа повторений упражнения является начало уменьшения маха движений или возникновение болевых ощущений. Мерой измерения гибкости служит максимально возможная амплитуда. Единицами измерения могут быть сантиметры или угловые градусы. 79Особенности функционального тестирования в спорте. Для тестирования функциональной подготовленности спортсменов исходят из модели чемпиона, в которой представлены характеристики сильнейших спортсменов в ответственных соревнованиях. Из этой модели выводятся спортивно-важные качества или модель мастерства, включаю-щая характеристики специальной физической, технической и тактической подготовки спортсменов, находящихся в спортивной форме. Отсюда опре-деляют наиболее информативные показатели функциональной подготов-ленности или шире - модель спортивных возможностей, в которую входят функциональная и психологическая подготовленность, морфологические особенности, возраст и спортивный стаж. Подобный подход позволяет определить целевые задачи подготовки спортсмена и его собственные спортивные перспективы. Для оценки индивидуальных особенностей адаптации организма к работе необходимо комплексное тестирование, позволяющее получить сведения о различных морфофункциональных и психофизиологических показателях конкретного человека. В тренировочном процессе используют различные виды контроля, в ходе которых исследуют состояние различ-ных органов и систем организма спортсмена. - Оперативный или текущий контроль, отражающий ежедневные реакции организма спортсмена на выполняемые физические нагрузки по наиболее вариативным показателям (ЧСС, тест Самочувствие – Активность -Настроение (САН), способность решения тактических задач, состояние внимания и пр.). - Этапный контроль, проводимый 5-6 раз в году с использованием менее динамичных показателей (МПК, максимальная анаэробная мощность, индекс Гарвардского степ-теста, оценка временных интервалов и пр.). - Углубленное медицинское обследование (1 раз в году) с анализом достаточно консервативных показателей (тестирование личностных характеристик, психофизиологических показателей, индивидуально-типологических особенностей высшей нервной деятельности) и ряда сложных медицинских обследований. Показатели функциональной подготовленности в покое. В центральной нервной системе спортсмена отмечается высокий уро-вень лабильности нервных центров, оптимальная возбудимость и хорошая подвижность нервных процессов (возбуждения и торможения). У спортсменов, обладающих выраженным качеством быстроты, время двигательной реакции укорочено, в ЭЭГ покоя отмечается повышенная частота альфа-ритма - 11-12 колеб.• с-1 (напр., у 80% баскетболистов 1 разряда и мастеров спорта, в отличие от лыжников-гонщиков и борцов, имеющих частоту 8-9 колеб.• с-1). Двигательный аппарат квалифицированных спортсменов отличается большей толщиной и прочностью костей, выраженной рабочей гипертрофией мышц, их повышенной лабильностью и возбудимостью, большей скоростью проведения возбуждения по двигательным нервам, за-пасами мышечного гликогена и миоглобина, высокой активностью фер-ментов. Об улучшении иннервации мышц свидетельствуют факты утолще-ния нервно-мышечных синапсов и увеличение их числа. Спортсмены име-ют высокие показатели произвольного напряжения мышц и в то же время отличного их расслабления, т. е. большую величину амплитуды твердости мышц. Обмен веществ спортсменов характеризуется увеличением запасов белков и углеводов, снижением уровня основного обмена (лишь в соревновательном периоде основной обмен может быть повышен из-за не-достаточного восстановления). Дыхание спортсменов более эффективно, так как увеличена ЖЕЛ (до 6-8 л), т. е. расширена дыхательная поверхность; больше глубина вдоха, что улучшает вентиляцию легких и снижает частоту дыхания (до 6-12 вдохов в 1 мин). Лучше развиты и более выносливы дыхательные мышцы (это можно наблюдать, например, по способности сохранять высокие зна-чения ЖЕЛ при повторных ее определениях). Величина минутного объема дыхания в покое не изменена (из-за противоположных сдвигов частоты и глубины дыхания), но максимальная легочная вентиляция значительно выше у тренированных лиц (порядка 100-200 л •мин-1) по сравнению с не-тренированными (60-120 л •мин-1). Увеличена длительность задержки ды-хания (особенно в синхронном плавании, нырянии), что свидетельствует о хороших анаэробных возможностях и пониженной возбудимости дыха-тельного центра. В сердечно-сосудистой системе спортсменов также выявлены адаптивные изменения. Тренированное сердце имеет большой объем и толщину сердечной мышцы. При тренировке на выносливость (у бегунов-стайеров, лыжников-гонщиков и др.) наблюдается особенное увеличение объема сердца - до 1000-1200 см3 (у нетренированных лиц - порядка 700 см3). Большой объем сердца - до 1200 см3 - характерен также для высокорослых баскетболистов, Однако более этой величины нарастание объема неблагоприятно, так как ухудшаются возможности кровоснаб-жения самой сердечной мышцы. При адаптации к скоростно-силовым уп-ражнениям происходит преимущественно утолщение сердечной мышцы - ее рабочая гипертрофия, а объем в меньшей степени превышает норму (800-1000 см3). Рабочая гипертрофия сердечной мышцы повышает мощ-ность работы сердца и обеспечивает кровоток в скелетных мышцах при их напряжении в условиях силовых и скоростно-силовых нагрузок. Повышение общего объема сердца сопровождается увеличением ре-зервного объема крови и, хотя ударный объем крови в покое практически не нарастает, но при работе его значительный рост обеспечивается за счет резервного объема. Частота сердечных сокращений спортсменов (особенно у стайеров) в покое понижена до 40-50 уд.•мин-1 (в отдельных случаях - до 28-32 уд.•мин-1), т. е. отмечается спортивная брадикардия. Минутный объем крови соответствует норме или немного ниже нее. У спортсменов в состоянии спортивной формы, в среднем, в 32,3% случаев наблюдается спортивная гипотония - снижение величины артериального давления до 100-105 мм рт. ст. и ниже. Чаще всего это встречается у гимнастов и спортсменов-стайеров. Выраженность артериальной гипотонии растет по мере увеличения спортивного стажа и уровня квалификации спортсменов. У спортсменов, специализирующихся в спортивных играх, наоборот, в состоянии покоя артериальное давление часто может быть повышенным. В системе крови у спортсменов больше концентрация эритроцитов - 6 • 1012• л -1 и гемоглобина - 160 г • л -1 и более. Это обеспечивает большую кислородную емкость крови (до 20-22 об. %). Общее количество гемо-глобина в организме у тренированного спортсмена (800-1000 г) пре-вышает его запасы у нетренированных лиц (700 г). Повышены щелочные резервы, т. е. легче противостоять окислению крови. Больше объем циркулирующей крови. Все перечисленные перестройки функциональных показателей свиде-тельствуют об общей адаптации организма спортсменов к физическим на-грузкам, а в частности, и к особенной функциональной подготовленности к упражнениям в избранном виде спорта. Тестирование функциональной подготовленности спортсменов при стандартных и предельных нагрузках. О функциональной подготовленности спортсменов судят как по показателям в состоянии покоя, так и по изменениям различных функций при работе. Для тестирования используют стандартные и предельные нагрузки, причем стандартные нагрузки подбирают такие, которые доступны всем обследуемым лицам независимо от возраста и уровня тренированности. Предельные же нагрузки зависят от индивидуальных возможностей человека. Принципиальные особенности реакций организма спортсменов на стандартные и предельные нагрузки. Изменения физиологических показателей у тренированных и нетренированных лиц при стандартных и предельных нагрузках имеют принципиальные различия. В случае стандартных нагрузок регламентируется мощность и дли-тельность работы. Задается частота педалирования на велоэргометре и величина преодолеваемого сопротивления, высота ступенек и темп вос-хождения при степ-тестах, длительность работы и интервалы между про-бами и т. п., т. е. всем обследуемым предлагается одинаковая работа. В этой ситуации более подготовленный человек, работая более экономно за счет более совершенной координации движений, имеет меньшие энерго-траты и показывает меньшие сдвиги в состоянии двигательного аппарата и вегетативных функций. В случае выполнения предельных нагрузок тренированный спортсмен работает с большей мощностью, выполняет заведомо больший объем работы, чем неподготовленный человек. Несмотря на экономич-ность отдельных физиологических процессов и высокую эффективность дыхания и кровообращения, для выполнения предельной работы трениро-ванный организм спортсмена затрачивает огромную энергию и развивает значительные сдвиги в моторных и вегетативных функциях, совершенно недоступные для неподготовленного человека. 80Максимальное потребление кислорода. Одним из распространенных и точных методов является определение физической работоспособности по величине максимального потребления кислорода (МПК). Аэробная возможность (мощность) человека определяется максимальной для него скоростью потребления кислорода. Чем выше МПК, тем больше (при прочих равных условиях) абсолютная мощность максимальной аэробной нагрузки. МПК зависит от двух функциональных систем: кислород-транспортной системы (органы дыхания, кровь, сердечно-сосудистая система) и системы утилизации кислорода, главным образом – мышечной. Максимальное потребление кислорода может быть определено с помощью максимальных проб (прямой метод) и субмаксимальных проб (непрямой метод). Для определения МПК прямым методом используются чаще всего велоэргометр или тредбан и газоанализаторы. При применении прямого метода от испытуемого требуется желание выполнить работу до отказа, что не всегда достижимо. Поэтому было разработано несколько методов непрямого определения МПК, основанных на линейной зависимости МПК и ЧСС при работе определенной мощности. Эта зависимость выражается графически на соответствующих номограммах. PWC170 и МПК примерно в равной степени характеризуют физическую работоспособность человека. Определение физической работоспособности по тесту PWC170 широко вошло в практику спортивной физиологии. В связи с этим повысилась актуальность вопроса о диагностическом и прогностическом значении теста, о том в какой мере этот неспецифический показатель может быть использован для поиска оптимального тренировочного процесса спортсменов различной специализации. Спортсмены скоростно-силовой группы (борцы, боксеры, гимнасты) отстают по показателям PWC170 и МПК даже от менее квалифицированных лыжников, гребцов, футболистов. Физическая работоспособность высококвалифицированных лыжников выше, чем бегунов как в обычных условиях, так и в «климатической» камере при температуре +40°С, и на «высоте» 3000 м. Универсальная зависимость ЧСС от мощности работы позволяет в циклических видах спорта оценивать специальную работоспособность по сдвигам ЧСС в определенном диапазоне (методом телепульсометрии) и по скорости перемещения спортсмена. Резервные возможности организма, поддерживающие физическую работоспособность. Наиболее важной характеристикой резервных возможностей организма является адаптационная сущность, эволюционно выработанная способность организма выдерживать большую, чем обычно нагрузку. Основными резервами являются функциональные возможности ЦНС, нервно-мышечного аппарата, кардио-респираторной системы, метаболические и биоэнергетические процессы. При различных мощностях работы и в разных видах спорта степень участия этих систем будет неодинаковым. При работе максимальной мощности ввиду ее кратковременности главным энергетическим резервов являются анаэробные процессы (запас АТФ и КрФ, анаэробный гликолиз, скорость ресинтеза АТФ), а функциональным резервом – способность нервных центров поддерживать высокий темп активности, сохраняя необходимые межцентральные взаимосвязи. При этой работе мобилизуются и расширяются резервы силы и быстроты. При работе субмаксимальной мощности биологические активные вещества нарушенного метаболизма в большом количестве поступают в кровь. Действуя на хеморецепторы сосудов и тканей, они рефлекторно вызывают максимальное повышение функций сердечно-сосудистой и дыхательной систем. Еще большему повышению системного артериального тонуса способствуют вазодилятаторы гипоксического происхождения, способствующие одновременно увеличению капиллярного кровотока. Функциональными резервами при работе субмаксимальной мощности являются буферные системы организма и резервная щелочность крови – важнейшие факторы, тормозящие нарушение гомеостаза в условиях гипоксии и интенсивного гликолиза; дальнейшее усиление работы кардио-респираторной системы. Значимым остается гликолитический вклад в биоэнергетику работающих мышц и выносливость нервных центров к интенсивной работе в условиях недостатка кислорода. При работе большой мощности физиологические резервы в общем те же, что и при субмаксимальной работе, но первостепенное значение имеют следующие факторы: • поддержание высокого (околопредельного) уровня работы кардио-респираторной системы; • оптимальное перераспределение крови; • резервы воды и механизмов физической терморегуляции. При работе умеренной мощности резервами служат пределы выносливости ЦНС, запасы гликогена и глюкозы, а также жиры и процессы глюконеогенеза, интенсивно усиливающиеся при стрессе. К важным условиям длительного обеспечения такой работы относят и резервы воды и солей и эффективность процессов физической терморегуляции. Наибольшим (двадцатикратным) резервом адаптации обладает система внешнего дыхания. Аппарат кровообращения занимает особое место, поскольку является основным лимитирующим звеном транспорта кислорода. Кроме того, сердечно-сосудистая система служит тонким индикатором цены адаптации организма к различным факторам внешней среды и к физическим нагрузкам. Об этой же ее роли свидетельствуют формирование так называемого «спортивного сердца» и участившиеся в последнее время предпатологические и патологические изменения функции сердца при высоких спортивных нагрузках. К числу таких изменений можно отнести нарушения сердечного ритма, возникновение синдрома дистрофии миокарда вследствие физического перенапряжения и другие сдвиги. Сердечно-сосудистая система обладает мощным резервом перераспределения кровотока, и по его суммарной мощности на первом месте стоит скелетная мускулатура. Среди всех органов и тканей мышцы занимают главенствующее положение по своему влиянию на центральную гемодинамику. Это объясняется большой массой скелетных мышц (около 40% массы тела) и их способностью к быстрому изменению уровня функциональной активности в широких пределах: в состоянии покоя кровоток в поперечно-полосатых мышцах составляет 15-20% от минутного объема крови (МОК), а при тяжелой работе он может достигать 80-85% от МОК. анаэробный порог. Уровень мощности физической работы или скорости передвижения, при котором происходит переключение энергообеспечения с аэробного на частично анаэробное с образованием и накоплением молочной кислоты в мышцах и крови.
|