Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Методы генной инженерии




Методы основаны на получении фрагментов исходной ДНК и их модификации.

Для получения исходных фрагментов ДНК разных организмов используется несколько способов:

– Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).

– Прямой химический синтез ДНК, например, для создания зондов (см. ниже).

– Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).

 

Определение нуклеотидного состава фрагментов ДНК по классической методике производится с помощью радиоактивных зондов – молекул ДНК с заранее известной структурой, в состав которых входят радиоактивные изотопы фосфора или водорода. Если структура выделенного фрагмента хотя бы частично комплементарна структуре зонда, то происходит ДНК-ДНК-гибридизация, и на микрофотографии препарата появляется засветка от радиоактивного изотопа. В настоящее время для определения нуклеотидных последовательностей ДНК широко используют флуоресцентные метки.

Выделенные участки ДНК встраивают в векторы переноса ДНК. Векторы ДНК – это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них. В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов.

В состав вектора ДНК входит не менее трех групп генов:

1. Целевые гены, которые интересуют экспериментатора.

2. Гены, отвечающие за репликацию вектора, его интеграцию в ДНК клетки-хозяина и экспрессию требуемых генов.

3. Гены-маркеры (селективные, репортерные гены), по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете).

Для внедрения векторов в прокариотические или эукариотические клетки используют различные способы:

1. Биотрансформация. Используются векторы, способные сами проникать в клетки.

2. Микроинъекции. Используются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки).

3. Биобаллистика (биолистика). Векторы «вбивают» в клетки с помощью специальных «пушек».

После внедрения векторов получают трансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК.

Возможности генной инженерии

Значительный прогресс достигнут в области создания новых продуктов для медицинской промышленности и лечения болезней человека.Возможности генной инженерии простираются так широко, что она может транспортировать ген не только из одного растения в другое растение, но и из организма животного в организм растения, или переносить человеческий ген в организм животного.
В 1982 г. создали первое генетически измененное растение. Это был табак.
Интересы исследователей могут быть направлены и на другие цели. Например, с помощью бактерий, нуждающихся в ртути, создаются деревья, очищающие почву. Созданы даже деревья, позволяющие снизить количество токсичных химикатов, необходимых для переработки древесины в бумагу Применение методов генной инженерии позволяет увеличить продуктивность сельскохозяйственных животных. В этой области намечаются два пути: использование генно-модифицированных кормов и непосредственное вмешательство в генотип животных. Возможности генной инженерии все шире применяются и для борьбы с человеческими болезнями, для создания новых лекарств и даже для замены человеческих органов. В ходе экспериментов со стволовыми клетками человека американским ученым удалось получить овцу, печень которой на 80% состоит из клеток человека. Дальнейшее развитие этого направления поможет получить орган, практически идентичный человеческому, и использовать его или его клетки для пересадки больному человеку.

Возможности генной инженерии год от года стремительно возрастают. Вот еще более сногсшибательный проект в с/х: вставить в геном картофеля ген хитиназы — фермента, расщепляющего хитин, слагающий оболочки насекомых. И если раньше колорадский жук переваривал съеденный им картофель, то тогда картофель, съедаемый вредителем, будет переваривать его самого!

Перспективы генной инженерии :

Таким образом, генная инженерия в будущем, возможно, обеспечит создание организмов с новыми свойствами, например, бактерий, синтезирующих человеческие гормоны, микроорганизмов, обладающих повышенной продуктивностью для получения антибиотиков, а в гораздо более отдаленном будущем, может быть, поможет человечеству избавиться от наследственных болезней.

И создание новых методов лечения человека, и разработка новых культур растений, употребляемых в пищу, и выведение новых пород животных требует детального исследования свойств, приобретаемых модифицированным организмом. Необходимо выявить не только реальную опасность, возможно уже существующую, но и потенциальную, которая может проявиться лишь через некоторое время.

Поскольку эволюция всего живого на Земле представляет собой цепь мутаций генов в организмах, очень важно убедиться, что встроенный ген не будет мутировать в нежелательную для человека сторону, не даст развиться в организме таким свойствам, которые могут нанести вред нынешнему и последующим поколениям.

 

 


Поделиться:

Дата добавления: 2015-04-18; просмотров: 139; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты