КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задание 5. Выполнить проектный прочностной расчет консольной балки, показанной на рисунке 7, и характеризующуюся параметрамиВыполнить проектный прочностной расчет консольной балки, показанной на рисунке 7, и характеризующуюся параметрами, приведенными в таблице 5, для случаев ее изготовления из (рисунок 8): а) квадратного прутка (b=h), б) прямоугольного прутка (b=2·h), в) двутавра (№), г) круглого прутка (d), д) трубы (dо= 0,8d). Сравнить массы полученных конструкций.
Рисунок 7 – Консольная балка
а) б) в) г) д) е)
Рисунок 8 – Возможные сечения консольной балки
Таблица 5 – Варианты к заданию 5
На балку действуют внешний силовой фактор – сосредоточенная сила F (таблица 5). Наиболее «опасный» внутренний силовой фактор, возникающий в теле балки, – изгибающий моментMu. График (эпюра) изменения Muвдоль оси балки показан на рисунке 6. Величины моментов Mu, действующих в сечениях консольной балки, нагруженной сосредоточенной силойF, пропорциональны этой силе и расстоянию Z от точки приложения силы до соответствующего сечения(Mu= FZ). То сечение рассматриваемой балки, в которомMu приобретает наибольшие по абсолютной величине значение («опасное» сечение) непосредственно примыкает к заделке. В нем действует изгибающий момент: Mu мах= FL. Изгиб вызывает искривление балки. В результате, ее слой, примыкающий к верхней поверхности, растягивается, слой у нижней поверхности сжимается, а слой, расположенный в центре («нейтральный» слой), не изменяет своей длины. Напряжения [σ], распределяются по сечению балки, пропорционально деформации соответствующих слоев (рисунок 8 е). Максимальная величина напряжений при изгибе может быть рассчитана по формуле: , где Wx – осевой момент сопротивления сечения. Осевые моменты сопротивления Wx и площади сечений, показанных на рисунке 8, определяют по формулам: прямоугольник: ; S = b·h; квадрат ; S =h2; круг: ; S = πd 2/4; кольцо: ; S = π ( d 2–d0) /4; двутавр – смотри рисунок 9 и таблицу 6. Заметим, что именно двутавр обеспечивает наилучшее сопротивление изгибу. Рисунок 9 – Параметры сечения двутавра
Таблица 5 – Характеристики двутавров
Для выполнения задания необходимо: 1) рассчитать максимальный изгибающий момент, (Н мм): Mu мах= FL; 2) рассчитать осевой момент сопротивления в опасном сечении, (мм3): ; 3) рассчитать характерный размер сечения балки для выбранных вариантов формы сечения, используя формулы, связывающие этот размер с Wx, или определить № двутавра по таблице 5. Изобразить сечения в масштабе; 4) рассчитать площадь сечения S и массу G (G = S·L·ρ, кг) балки для выбранных вариантов формы ее сечения.
|