КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Основные положения теории прогнозированияТеория прогнозирования включает анализ объекта прогнозирования; методы прогнозирования, подразделяющиеся на математические (формализованные) и экспертные (интуитивные); системы прогнозирования, в частности непрерывного, при котором за счет мониторинга осуществляется корректировка прогнозов в процессе функционирования объекта. Одним из основных классификационных признаков является также период прогноза, при этом большинство авторов выделяют три вида прогнозов: краткосрочный, среднесрочный и долгосрочный. Естественно, что временные интервалы прогнозов зависят от природы объекта, т. е. изучаемой области деятельности. Так, при рассмотрении технико-экономических показателей деятельности фирм период краткосрочного прогноза не превышает 1 года, среднесрочного прогноза – от 1 до 5 лет, долгосрочного – свыше 5 лет. Математические методы прогнозирования подразделяются на три группы: - симплексные (простые) методы экстраполяции по временным рядам; - статистические методы, включающие корреляционный и регрессионный анализ и др.; - комбинированные методы, представляющие собой синтез различных вариантов прогнозов. Прогнозы I типа (в «узком» смысле): - осуществляются с применением симплексных или статистических методов на основе временных рядов; - число значимых переменных включают от 1 до 3 параметров, т. е, по масштабности они относятся к сублокальным прогнозам; - при использовании одного параметра, например, времени, такие прогнозы считаются сверхпростыми, при двух-трех взаимосвязанных параметрах – сложными; - по степени информационной обеспеченности периода ретроспекции прогнозы I типа могут быть отнесены к объектам с полным информационным обеспечением. Для повышения точности и достоверности прогнозных оценок I типа целесообразно использование комбинированных методов, при этом желательно использование большого количества вариантов прогноза, рассчитанных на основе различных подходов или альтернативных источников информации. Прогноз II типа (в «широком» смысле) подразумевает, что исходные данные для получения оценок определяются с использованием опережающих методов прогнозирования: «патентного», публикационного и др. Как правило, прогнозы II типа используются для долгосрочного прогнозирования и разбиваются на два этапа: первый – получение прогнозных оценок основных факторов; второй – собственно прогноз развития процесса или явления. Учитывая объективную сложность и трудоемкость выполнения прогнозов II типа, можно констатировать, что наибольшее распространение получили методы прогнозирования I типа. Наиболее часто для прогнозирования I типа используется метод экстраполяции. В общем случае модель прогноза включает три составляющие (рис. 3.4.1) и записывается в виде: (1.1) где yt – прогнозные значения временного ряда; – среднее значение прогноза (тренд); vt – составляющая прогноза, отражающая сезонные колебания (сезонная волна); εt – случайная величина отклонения прогноза. Рис.11.1. Прогнозирование на основе временных рядов: 1 – экспериментальные данные на интервале наблюдения (A); 2 – тренд; 3 – тренд и сезонная волна; 4 – значение точечного прогноза на интервале упреждения (B); 5 – интервальный прогноз В частных случаях количество составляющих модели меньше, например, только и vt. Подробно вопросы прогнозирования с использованием методов экстраполяции изложены в ряде работ, но ввиду отсутствия общепринятого алгоритма обработки временных рядов может быть предложена следующая последовательность расчета: 1). На основе значений временного ряда на предпрогнозном периоде (интервале наблюдения) с использованием метода наименьших квадратов определяются коэффициенты уравнения тренда yt, видом которого задаются. Обычно для описания тренда используются полиномы различных порядков, экспоненциальные, степенные функции и т. п. 2). Для исследования сезонной волны значения тренда исключаются из исходного временного ряда. При наличии сезонной волны определяют коэффициенты уравнения, выбранного для аппроксимации vt. 3) Случайные величины отклонения εt определяются после исключения из временного ряда значений тренда и сезонной волны на предпрогнозном периоде. Как правило, для описания случайной величины εt используется нормальный закон распределения. 4). Для повышения точности прогноза применяются различные методы (дисконтирование, адаптация и др.). Наибольшее распространение в практике расчетов получил метод экспоненциального сглаживания, позволяющий повысить значимость последних уровней временного ряда по сравнению с начальными. Комбинированный прогноз. На формирование стратегии автотранспортного предприятия (АТП) на рынке влияют факторы как внешней, так и внутренней среды, в том числе определяющие состояние спроса на услуги. Основным является вопрос о потенциальных возможностях предприятия, определяемых технико-технологическими и организационно-финансовыми факторами среды. Принципиальное различие между предъявляемыми к перевозке грузами (или спросом) и провозными возможностями АТП состоит в том, что первое следует отнести к условиям внешней среды, т. е. «природе», состояние которой формируется под действием большого количества факторов и в подавляющем большинстве случаев не зависит от транспортной политики конкретного АТП (если рассматриваемое предприятие не является монополистом в данном сегменте рынка транспортных услуг), а второе определяется политикой и тактикой действий предприятия, не имея случайного характера, а, скорее, подчиняясь неким внутренним закономерностям. Таким образом, под влиянием случайных факторов объем перевозок представляет собой случайную величину, подчиняющуюся определенному закону или функции распределения F(Q). Введение функции распределения для описания состояния «природы» позволяет, согласно теории статистических решений, использовать вероятностные критерии принятия решений в условиях риска. Что касается состояния АТП, то оно может быть представлено в виде различных стратегий Ai, каждая из которых количественно характеризуется числом автомобилей Ni и их провозными возможностями Wi. Указанные стратегии Ai, являются дискретными величинами, если используется число автомобилей N, или непрерывными за счет варьирования показателей, входящих в расчет производительности автомобиля Wi. Связь между Ai стратегией и объемом перевозок Qi определяется в виде матрицы (табл. 11.6), элементы которой (aij) отражают «выигрыш», получаемый АТП при выборе i-й стратегии. Матрица возможных стратегий Ai АТП при различных объемах перевозок Qj («состояния природы») Таблица 11.6
В ряде работ, где предпринимались попытки использования теории статистических решений для конкретных хозяйственных объектов, в качестве элемента матрицы aij – «выигрыша» – использовались условные величины. В качестве «выигрыша» могут быть использованы различные экономические показатели: доход, прибыль и другие, а также показатели, способствующие усилению конкурентных или рыночных позиций, усилению влияния на клиентуру и укреплению имиджа предприятия, улучшению качества производимых услуг. Возможны три соотношения между объемом перевозок Qi и стратегией предприятия А. Первое – – состояние «выигрыша»; второе – – нейтральное состояние; третье – – состояние «проигрыша». Величина – вероятностное отклонение за счет случайного характера величин, определяющих значение элементов матрицы. Теоретически возможен вариант, когда области значений aij будут расположены иным образом, чем это показано на рис. 11.4. Рис. 11.4. Распределение на различные области матрицы стратегий АТП: 1 – «выигрыш», 2 – нейтральное состояние, 3 – «проигрыш» В частности, введение оценки «упущенной выгоды» может изменить границы областей 1-3. Считается, что наилучшей стратегией A = Ai является та, при которой показатель Ai обращается в максимум: (11.14) где Qj = F(Qj) – вероятность j-го состояния «природы». Таким образом, оптимальная стратегия АТП может быть определена при наличии F(Qj) и матрицы стратегий aij. Рассмотрим возможные варианты расчета F(Qj). Традиционно для количественной оценки прогноза Qj, используется метод экстраполяции по динамическим рядам с использованием полиномов различной степени. Результаты прогноза представляются в виде среднего значения Q и дисперсии DQ, по которым определяется вид функции распределения F(Qj). Далее c использованием условия максимизации Ai выбираем стратегию АТП. Основная трудность использования вышеописанной методики – это невысокая точность прогноза, Повышение точности может быть достигнуто за счет комбинированных методов прогноза, предусматривающих синтез двух и более прогнозных вариантов. Каждый метод прогнозирования обладает определенной достоверностью, имеет свои преимущества и недостатки, Считается, что комбинированные методы прогнозирования (синтез прогнозов) позволяют компенсировать недостатки одних способов достоинствами других. На рис. 11.5 представлена блок-схема комбинированного прогноза для двух вариантов прогноза, один из которых – прогноз, выполненный эвристическим методом, основанным на статистической обработке мнений экспертов. Рис. 11.5. Блок-схема выбора стратегии АТП в целевом сегменте рынка транспортных услуг Процедура получения экспертных оценок может быть формализована и представлена в виде блок-схемы (рис. 11.6). Рис. 11.6. Блок-схема прогноза на основе экспертных опросов
Рассмотрим некоторые блоки подробнее. Формирование группы экспертов – важнейшая составляющая экспертного метода. Не останавливаясь подробно на вопросах персонального подбора, затронем только количественную сторону, а именно число экспертов. Известно, что при прогнозировании в целях минимизации расходов на прогноз стремятся привлекать минимальное число экспертов при условии обеспечения ошибки результата прогнозирования не более Е, где 0 < Е < 1. Поэтому рекомендуемое число экспертов может быть определено по формуле: (11.15) При подстановке предельных значений Е находим: Таким образом, минимальное количество экспертов равно 4. Для определения максимальной численности экспертной группы используется неравенство: (11.16) где Ki – компетентность i-го эксперта, рассчитываемая на основе анкеты самооценки; Kmax – максимально возможная компетентность по используемой шкале компетентности экспертов. Статистический анализ результатов опроса предусматривает проведение двух взаимосвязанных процедур: традиционной статистической обработки в виде средних значений, дисперсий и т. п., а также оценки всей экспертной группы – степени согласованности, взаимосвязи и других показателей мнений экспертов. Оценка группы экспертов проводится с использованием части полученных статистических оценок. Если последние не удовлетворяют соответствующим критериям, то в блок-схеме предусмотрена корректировка, которая приводит, в частности, к изменению состава экспертов и повторной процедуре опроса.
Методика статистической обработки данных включает следующие этапы: 1. Определение для каждого фактора суммы рангов: (11.17) где aij – ранг, присвоенный j-м экспертом i -му фактору; m – число экспертов. 2. Определение средней величины суммы рангов: (11.18) где k – число факторов. 3. Определение суммы квадратов отклонений: (11.19) 4. Определение коэффициента конкордации W, позволяющего оценить степень согласованности мнений экспертов (при отсутствии равных рангов): (11.20) Если W существенно отличается от нуля, то можно полагать, что между оценками экспертов существует определенное согласие. 5. Оценка неслучайности согласия мнений экспертов производится с помощью критерия Пирсена по величине .при числе степени свободы n = k – 1 и заданном уровне значимости α: (11.21) где – табличное значение. В случае соблюдения неравенства с доверительной вероятностью можно утверждать, что мнения экспертов относительно вероятности факторов согласуются неслучайно. Представленный вариант получения прогноза на основе экспертных оценок является универсальным и в случае использования баллов заканчивается построением ранжированной диаграммы рангов. Для перехода к конкретному прогнозу, в частности объема перевозок, последовательности расчета сводятся к следующему: 1. Составляется ряд интервальных значений Qj возможных объемов перевозок для рассматриваемого клиента; разбивка на n интервалов осуществляется на основе F(Qj). 2. Эксперты оценивают значимость каждого Qj с использованием баллов, шкала которых охватывает n интервалов, т.е. j = 1, 2, …, n. 3. Проводится статистическая обработка оценок экспертов, и после ранжирования каждому Qj присваивается новый номер в порядке убывания, т.е. интервалу Qj с наименьшей суммой баллов присваивается номер 1 и т.д. 4. Полагаем, что интервалу Qj соответствует наиболее правдоподобная гипотеза (П1), затем вторая ( (П2) и т.д. Вероятности гипотез (П1), (П2 ), …., (Пn) определяются по формуле: (11.22) 5. Восстанавливается функция распределения экспертного прогноза объема перевозок F(Qэj). 6. Для восстановленной «экспертной» функции находятся среднее значение и дисперсия Dэq. Значения весовых коэффициентов для определения комбинированных оценок вероятностей каждого интервала находим по формулам: (11.23) где μ1 и Dq – весовой коэффициент и дисперсия экстраполяционного прогноза; μ2 и Dэq – весовой коэффициент и дисперсия экспертного прогноза. 7. Вероятности F(Qj) для комбинированного прогноза рассчитываются следующим образом: (11.24) Вопросы для повторения Классификация методов прогнозирования. Суть прогноза текущего расхода деталей на складе. Расчет страхового запаса. Метод комбинированного прогноза.
Маркетинговая информация как основа логистического планирования и прогнозирования Задача планирования логистики - разработать проекты, устанавливающие на перспективу определенные параметры логистической деятельности, в результате чего достигается цель логистической системы предприятия. Принятие решения - это выбор оптимальной альтернативы при заданной цели с учетом побочных условий. Прогнозирование в логистике (прогноз) - вероятностное представление о появлении событий (последствий и данных) в будущем, основываемое на наблюдениях и теоретических положениях. Прогноз - прогностическая информация. Планирование в логистике - систематическое принятие планово-управленческих решений в отношении физического перемещения и передачи собственности на продукцию от производителя к потребителю, включая транспортировку, хранение и совершение сделок. План - это результат планирования. Стратегическое планирование предприятия - деятельность по выработке плана с дальним прицелом, касающегося форм и способов поддержания существующего уровня бизнеса, его поддержания и развития в постоянно изменяющейся среде. Этапы планирования: • формулирование целей; • постановка логистических проблем; • поиск альтернатив; • прогнозирование; • оценка и принятие решений. Система планирования - упорядоченная структура отдельных частей планирования. По срокам различаются следующие виды планирования: • стратегическое рамочное планирование; • долгосрочное планирование; • среднесрочное планирование; • бюджетное планирование; • скользящее краткосрочное планирование. Планирование продаж определяет потребности в сырье, продукции и услугах, которые будут приобретены специалистами отдела закупок предприятия. Планирование потребности в материалах - это система планирования, определяющая количество и график выпуска требуемой продукции, определяющая время и объем потребности в материалах в пределах периода планирования. План потребности в материалах - разделенный на временные фазы график для планируемого выполнения заказов на закупку компонентов и материалов после принятия в расчет их наличного количества и ожидаемого цикла заказов, чтобы определить правильную дату размещения заказа на закупку. Планирование производства: • планирование количества изделий, необходимых для производства; • планирование промежутка времени, в течение которого будет произведена продукция; • планирование обеспечения сырья и оборудования для производства необходимого количества продукции в рамках запланированного периода времени.
|