КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Системы регуляцииРегуляторные системы адаптированного к гипоксии организма обеспечивают достаточную эффективность, экономичность и надежность управления его жизнедеятельностью. Это достигается благодаря включению механизмов нервной и гуморальной регуляции функций. Нервная регуляция Значительные изменения как в высших отделах мозга, так и в вегетативной нервной системе адаптированного к гипоксии организма характеризуются: Ú повышенной резистентностью нейронов к гипоксии и дефициту АТФ, а также некоторым другим факторам (например, токсинам, недостатку субстратов метаболизма); Ú гипертрофией нейронов и увеличением числа нервных окончаний в тканях и органах; Ú увеличенной чувствительностью рецепторных структур к нейромедиаторам. Последнее, как правило, сочетается с уменьшением синтеза и высвобождения нейромедиаторов. Указанные, а также и другие изменения в нервной системе способствуют: Ú реализации мобильных регулирующих нейро-гуморальных влияний на органы и ткани; Ú быстрой выработке и сохранению новых условных рефлексов; Ú переходу приобретенных навыков из кратковременных в долговременные; Ú повышенной устойчивости нервной системы к патогенным воздействиям. Гуморальная регуляция Перестройка в условиях гипоксии функционирования эндокринной системы обусловливает: Ú меньшую степень стимуляции мозгового вещества надпочечников, гипоталамо‑гипофизарно‑надпочечниковой и других эндокринных систем. Это ограничивает активацию механизмов стресс-реакции и ее возможные патогенные эффекты; Ú повышение чувствительности рецепторов клеток к гормонам, что способствует уменьшению объема их синтеза в железах внутренней секреции. В целом, изменения в системах регуляции потенцируют как системные, так и органные приспособительные реакции организма, жизнедеятельность которого осуществляется в условиях гипоксии. Расстройства в организме при гипоксии Характер, динамика и степень изменений жизнедеятельности организма в условиях гипоксии зависят от ряда факторов: типа гипоксии, ее степени, скорости развития, а также от состояния реактивности организма. Острая и острейшая (молниеносная) тяжелая гипоксия приводит к быстрой потере сознания, подавлению функций организма и его гибели. Такая картина наблюдается, например, при вдыхании газовых смесей, не содержащих кислорода или содержащих его в малых количествах. Это может быть при авариях в производственных условиях (например, в шахтах), в летательных аппаратах, в подводных лодках, при поломке скафандров. Молниеносная гипоксия развивается также при фибрилляции желудочков сердца, при острой массивной (артериальной) кровопотере, отравлении цианидами и других подобных ситуациях. Хроническая (постоянная или прерывистая) умеренная гипоксия сопровождается, как правило, адаптацией организма к гипоксии. Ниже приведена характеристика расстройств в организме при острой и подострой формах гипоксии. Расстройства обмена веществ Расстройство обмена веществ (рис. 16-10) — одно из наиболее ранних проявлений гипоксии. В условиях острой и подострой гипоксии закономерно развивается ряд метаболических расстройств: Ú уровень АТФ и креатинфосфата при гипоксии любого типа прогрессирующе снижаются вследствие подавления процессов биологического окисления (особенно — аэробных) и сопряжения их с фосфорилированием; Ú содержание АДФ, АМФ и креатина нарастают вследствие нарушения их фосфорилирования; Ú концентрация неорганического фосфата в тканях увеличивается в результате повышенного гидролиза АТФ, АДФ, АМФ, креатинфосфата и подавления реакций окислительного фосфорилирования; Ú процессы тканевого дыхания в клетках подавлены вследствие дефицита кислорода, недостатка субстратов обмена веществ, подавления активности ферментов тканевого дыхания; Ú гликолиз на начальном этапе гипоксии активируется. Основные причины этого заключаются вдефиците АТФ и снижении его ингибирующего влияния на ключевые ферменты гликолиза, а также в активации гликолитических ферментов продуктами гидролиза АТФ — АДФ и АМФ. Активация гликолиза приводит к снижению содержания гликогена и глюкозы в клетках и кувеличению внутриклеточного содержания молочной и пировиноградной кислот. Последнее является также результатом торможения их окисления в дыхательной цепи и ресинтеза из них гликогена, требующего энергии АТФ; Ú содержание H+ в клетках и биологических жидкостях прогрессирующе нарастает и развивается ацидоз вследствие торможения окисления субстратов, особенно — лактата и пирувата, КТ и в меньшей мере — жирных кислот и аминокислот; Ú биосинтез нуклеиновых кислот и белков подавлен вследствие дефицита энергии, необходимой для этих процессов. Параллельно с этим активируется протеолиз, обусловленный активацией в условиях ацидоза протеаз, а также — неферментного гидролиза белков; Ú азотистый баланс становится отрицательным. Это сочетается с повышением содержания остаточного азота в плазме крови и аммиака в тканях (вследствие активации реакций протеолиза и торможения процессов протеосинтеза); Ú жировой обмен также существенно изменен и характеризуется: Ú активацией липолиза (вследствие повышения активности липаз и ацидоза); Ú торможением ресинтеза липидов(в результате дефицита макроэргических соединений); Ú накоплением в результате вышеуказанных процессов избытка кетокислот (ацетоуксусной, b-оксимасляной кислот, ацетона) и ВЖК в плазме крови, межклеточной жидкости, клетках. При этом ВЖК оказывают разобщающее влияние на процессы окисления и фосфорилирования, что усугубляет дефицит АТФ; Ú обмен электролитов и жидкости в тканях нарушен. Это проявляется: Ú отклонениями трансмембранного соотношения ионов в клетках(в условиях гипоксии клетки теряют K+, в цитозоле накапливаются Na+ и Ca2+, в митохондриях — Ca2+); Ú дисбалансом между отдельными ионами (например, в цитозоле уменьшается соотношение K+/Na+, K+/Ca2+); Ú увеличением в крови содержания Na+, Cl–, отдельных микроэлементов.Изменения содержания разных ионов различны. Это зависит от степени гипоксии, преимущественного повреждения того или иного органа, изменений гормонального статуса и других факторов; Ú накоплением избытка жидкости в клетках и набуханием клеток (вследствие увеличения осмотического давления в цитоплазме клеток в связи с накопление в них Na+, Ca2+ и некоторых других ионов, а также повышения онкотического давления в клетках в результате распада полипептидов, липопротеинов и других белоксодержащих молекул, обладающих гидрофильными свойствами). Ы верстка! вставить рисунок «рис-16-10» Ы Рис. 16-10. Расстройства обмена веществ при острой гипоксии. В тканях и органах могут развиваться и другие нарушения метаболизма. Во многом они зависят от причины, типа, степени и длительности гипоксии, преимущественно пораженных при гипоксии органов и тканей и ряда других факторов. Нарушения функций органов и тканей при гипоксии При гипоксии нарушения функций органов и тканей выражены в разной мере. Это определяется: Ú различной резистентностью органов к гипоксии; Ú скоростью ее развития; Ú степенью и длительностью ее воздействия на организм. Резистентность органов к гипоксии Наибольшая устойчивость к гипоксии у костей, хрящей, сухожилий, связок. Даже в условиях тяжелой гипоксии в них не обнаруживается значительных морфологических отклонений. В скелетной мускулатуре изменения структуры миофибрилл, а также их сократимости выявляются через 100–120 мин, а в миокарде — уже через 15–20 мин. В почках и печени морфологические отклонения и расстройства функций обнаруживаются обычно через 20–30 мин после начала гипоксии. Наименьшей резистентностью к гипоксии обладает ткань нервной системы. При этом различные ее структуры по-разному устойчивы к гипоксии одинаковой степени и длительности. Резистентность нервных клеток уменьшается в следующем порядке: периферические нервные узлы ® спинной мозг ® продолговатый мозг ® гиппокамп ® мозжечок ® кора больших полушарий. Прекращение оксигенации коры мозга вызывает значительные структурные и функциональные изменения в ней уже через 2–3 мин, в продолговатом мозге — через 8–12 мин, а в ганглиях вегетативной нервной системы — через 50–60 мин. Отсюда следует, что последствия гипоксии для организма в целом определяются степенью повреждения нейронов коры больших полушарий и временем их развития.
|