Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Сопло Лаваля.




Назначение соплового аппарата турбины.
В турбинных ступенях, первой ступени, а также ступенях давления находится сопловой аппарат, который предназначен для преобразования потенциальной энергии в кинетическую энергию скоростного напора. А также проис-ит направление потока под заданным углом.

Возьмем уравнение неразрывности, применив к нему теорему Остроградского-Гаусса. В результате получим уравнение расхода: G=ρUF. Проведем преобразования, и в результате получим уравнение Вулиса – закон обращения воздействия.

Первая часть этого уравнения определяет влияние различных воздействий на поток:

Влияние расхода, площади поперечного сечения, подвода тепла, совершение работы над газом или газом, работы сил трения.

Есть 4 вида сопел для разгона потока:

1) Расходное (массовое) сопло. Изменение расхода – увеличение на дозвуке, уменьшение – на сверхзвуке.

2) Механическое сопло. Чтобы механическое сопло разгоняло газ от дозвука до сверхзвука, необходимо, чтобы на дозвуке газ сам совершал работу, а на сверхзвуке к газу подводили работу. Технически этого можно добиться последовательным включением компрессора и турбины.

3) Тепловое сопло. Чтобы ускорить поток на дозвуковом режиме, необходимо подводить тепло, а на сверхзвуке – отводить. На практике применяют комбинированное сопло – после критического сечения (М=1) диаметр увеличивают.

4) Геометрическое сопло (сопло Лаваля). Чтобы разогнать поток необходимо сужать поперечное сечение трубы. Так можно разгонять поток вплоть до сечения, где М=1 (критического сечения). Чтобы далее разгонять поток, необходимо расширять поперечное сечение трубы.

 


 


Поделиться:

Дата добавления: 2015-04-18; просмотров: 95; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты