КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Относительное равновесие жидкости.Относительным равновесием жидкости называется такое ее состояние, при котором каждая ее частица сохраняет свое положение относительно твердой стенки движущегося резервуара, в котором находится жидкость (см. рис. 2.21). Рис. 2.21. Относительное равновесие жидкости во вращающемся сосуде При относительном покое рассматриваются две задачи: определяется форма поверхности уровня или равного давления и выясняется характер распределения давления. В данном случае необходимо учитывать силы инерции, дополняющих систему массовых сил, действующих в покоящейся жидкости. Рассмотрим случай, когда сосуд с жидкостью вращается вокруг своей оси с постоянной скоростью. Для определения формы свободной поверхности и закона распределения давления выберем вблизи свободной поверхности частицу жидкости массой dm. На эту частицу действует массовая сила dF, направленная по нормали к поверхности. Разложим эту силу на две составляющие: горизонтальную и вертикальную . Разделив действующие силы на dm, получим дифференциальное уравнение поверхности уровня или . Проинтегрировав, получаем
Вывод: При вращении резервуара с постоянной скоростью вокруг вертикальной оси поверхностями равного давления будет семейство параболоидов вращения. Для точки М, находящейся на свободной поверхности жидкости . Закон распределения давления найдем из дифференциального уравнения гидростатики, которое в данном случае примет вид . После интегрирования с учетом граничных условий ( ), получаем: . Если представить, что , то получим уравнение
Вывод: Распределение давления подчиняется линейному закону для любой фиксированной цилиндрической поверхности.
|