Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Генераторы смешанного возбуждения




Генератор смешанного возбуждения самовозбуждается так же, как и генератор параллельного возбуждения и их х. х. х. аналогичны. Характеристику короткого замыкания генератора смешанного возбуждения можно снять только при питании параллельной обмотки возбуждения от постороннего источника, если действие последовательной обмотки является встречным, так как при согласном действии обмоток возбуждения возникает недопустимо большой ток короткого замыкания.

Если снять характеристики короткого замыкания при встречном включении последовательной обмотки и при отключении этой обмотки, то можно определить н. с. последовательной обмотки возбуждения в масштабе тока параллельной обмотки возбуждения. Тогда можно построить характеристический треугольник и для случая согласного включения последовательной обмотки возбуждения.

Генератор смешанного возбуждения с согласным включением последовательной обмотки возбуждения имеет самую благоприятную внешнюю характеристику. Его напряжение при надлежащем выборе н. с. последовательной обмотки мало изменяется с изменением нагрузки.

У генератора смешанного возбуждения с встречным включением последовательной обмотки возбуждения действие последней эквивалентно увеличению размагничивающего действия реакции якоря. Вследствие этого с увеличением нагрузки напряжение генератора сильно падает. Поэтому этот генератор применяется редко.

 

38 Коммутация в машинах постоянного тока

Под коммутацией в машинах постоянного тока понимают процесс переключения секций обмотки якоря из одной параллельной ветви в другую, сопровождающийся изменением направления тока в секциях. Направления и значения тока коммутируемой (переключаемой) секции в различных ее положениях относительно неподвижной щетки показаны на рис. 9.10.

В результате изменения тока в коммутирующей секции возникает ЭДС самоиндукции eL.

Для увеличения механической прочности щеток их ширину выбирают обычно больше ширины коллекторной пластины. Вследствие этого щеткой замыкаются накоротко и одновременно коммутируются несколько секций. Последнее вызывает в каждой секции ЭДС взаимной индукции еM. Кроме того, в секции возникает ЭДС еv, вызываемая вращением секции в магнитном поле поперечной реакции якоря.

Сумма перечисленных ЭДС невелика. Однако, поскольку секция замкнута щеткой накоротко, это приводит к заметному дополнительному току в замкнутом контуре секции, в резуль­тате чего плотность тока под щеткой становится неодинаковой. Под сбегающим краем щетки плотность тока возрастает, что приводит к искрению под щеткой, особенно интенсивному в момент размыкания секции. Если не принять специальных мер для улучшения условий коммутации (уменьшения искрения под щетками), то наиболее ответственная часть машины — коллектор — через непродолжительное время выйдет из строя.

Рис. 9.10. К пояснению явл-я коммутации Рис. 9.11. Полярность гл и доп полюсов

Для улучшения коммутации машины мощностью 1 кВт и более снабжаются дополнительными полюсами (рис. 9.11). В машинах с дополнительными полюсами щетки устанавливают на геометрической нейтрали. С помощью дополнительных полюсов в зоне коммутации создается магнитное поле, в результате чего в коммутируемых секциях индуктируется ЭДС, компенсирующая ЭДС eL, eM и ev. Так как ЭДС eL, eM и ev зависят от тока якоря, то для их компенсации при различных нагрузках обмотку дополнительных полюсов включают последовательно с якорем. Вследствие насыщения дополнительных полюсов при перегрузках машины условия коммутации ухудшаются и под щетками появляется недопустимое искрение. Наибольший допустимый ток машин постоянного тока определяется условиями коммутации и лежит для различных машин в пределах (2 ÷ 3) Iном , где Iном — номинальный ток машины.

Так как ЭДС ev возникает вследствие вращения якоря в магнитном поле реакции якоря, то для ее уничтожения с помощью МДС дополнительных полюсов должно быть создано магнитное поле, от вращения в котором возникла бы ЭДС, направленная против ev. Учитывая характер изменения результирующего магнитного поля при нагрузке генератора и двигателя с указанными направлениями их вращения (см. рис. 9.8, в), следует сказать: полярность дополнительного полюса генератора должна быть такой же, как последующего за ним по направлению вращения главного полюса (рис. 9.11); полярность дополнительного полюса двигателя должна быть такой же, как предшествующего ему по направлению вращения главного полюса. Выбирая соответствующее значение МДС обмотки дополнительных полюсов, можно скомпенсировать также ЭДС eL и еM.

39 Способы регулирования частоты вращения двигателя постоянного тока

Частота вращения двигателя постоянного тока

п = [U - IаRа + Rдо6 )]/(сеФ).

Из уравнения следует, что возможны три способа регулирования его угловой скорости:

1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,

2) регулирование за счет изменения потока возбуждения двигателя Ф,

3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U. Ток в цепи якоря Iя и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.
Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря. Схема включения двигателя для этого случая представлена на рис. 1, а электромеханические и механические характеристики — на рис. 2, а.

Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.

Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.

Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.

Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.

При втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.

При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Механические характеристики для различных значений потока двигателя приведены на рис. 2, а и 2, б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.

Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.

Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.

Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.

Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и Uном двигателя.

Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.

Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.

 

40 Характеристики генератора постоянного тока

Характеристики генератора определяют его рабочие свойства и представляют зависимость между основными величинами, которыми являются эдс в обмотке якоря Е, напряжение на его зажимах U, ток в якоре I, ток возбуждения и частота вращения якоря n.

Характеристика холостого хода генератора независимого возбуждения:
а — при перемагничнвании стали, б — при изменении частоты вращения якоря

Характеристики представляют собой зависимости между двумя из указанных основных величин при неизменных остальных. Эти зависимости имеют различный вид для генераторов разных типов.
Снятие всех характеристик машины производится при постоянной частоте вращения якоря, так как при изменении частоты значительно изменяются все характеристики генератора.
Характеристика холостого хода генератора представляет собой зависимость между эдс в якоре и током возбуждения, снятую при отсутствии нагрузки и постоянной частоте вращения.
Для генераторов независимого возбуждения при отсутствии нагрузки (холостой ход) ток в якоре равен нулю. Так как эдс, индуктированная в обмотке якоря, равна
Е = СnФ, то при постоянной частоте вращения эдс окажется прямо пропорциональной магнитному потоку. Поэтому в измененном масштабе характеристика холостого хода представляет магнитную характеристику машины.
При Iв = 0 магнитная цепь машины (главным образом ярмо) имеет некоторый остаточный магнитный поток Ф0, который индуктирует в обмотке якоря эдс Е (изо, а).
Эта эдс составляет несколько процентов (2 - 5%) номинального напряжения машины.
С увеличением тока в обмотке возбуждения возрастают как магнитный поток, так и эдс, индуктированная в обмотке якоря. Таким образом, при постоянном постепенном увеличении возрастает и эдс (кривая1).
Если после снятия восходящей ветви от точки А начать постепенно понижать ток возбуждения , то эдс также начнет уменьшаться, но за счет гистерезиса нисходящая ветвь (кривая 2) пойдет несколько выше восходящей ветви этой характеристики.
Практически восходящая и нисходящая ветви магнитной характеристики имеют крайне незначительное расхождение, и за основную характеристику принимается средняя зависимость (кривая 3).
На изо, б показаны характеристики холостого хода, снятые при различной частоте вращения якоря генератора.
Вращению якоря машины с номинальной частотой , указанной в паспорте генератора, соответствует кривая 1. Для всех машин нормального типа точка номинального напряжения (точка А) находится на перегибе магнитной характеристики.
При частоте вращения, отличной от номинальной частоты вращения якоря генератора, меняется характеристика холостого хода, так как эдс пропорциональна частоте. При n' > nн характеристика холостого хода расположится выше (кривая 2), а при n' < - ниже (кривая 3), чем при номинальной частоте вращения.
Для генераторов параллельного возбуждения при холостом ходе ток в якоре равен току возбуждения (I = Iв). Однако весь цикл перемагничивания в генераторах параллельного возбуждения снять нельзя, так как при изменении направления тока в обмотке возбуждения магнитный поток ее будет направлен встречно потоку остаточного магнетизма и самовозбуждение генератора окажется невозможным.

Для генератора последовательного возбуждения характеристика холостого хода смысла не имеет, так как при холостом ходе в якоре и обмотке возбуждения ток равен нулю
Для генераторов смешанного возбуждения характеристика холостого хода совпадает с характеристикой генератора параллельного возбуждения.
Внешняя характеристика представляет собой зависимость напряжения на зажимах генератора от тока нагрузки. Эта характеристика соответствует естественным условиям работы машины, т. е. машина нерегулируема (сопротивление цепи возбуждения постоянно) и снимается при неизменной частоте вращения.
Для генераторов независимого возбуждения при постоянном неизменен также и ток возбуждения . Внешние характеристики такого генератора показаны на изо, а.

Внешняя характеристика генератора независимого возбуждения

Кривая 1 представляет собой внешнюю характеристику на понижение напряжения, соответствующую току обмотки возбуждения, при котором напряжение генератора равно номинальному при холостом ходе.
С возрастанием нагрузки (тока I в якоре генератора) увеличивается как падение напряжения в сопротивлении его обмотки, так и размагничивающее действие реакции якоря, что вызывает понижение напряжения.
При изменении нагрузки от нуля до номинальной напряжение на зажимах генератора уменьшается на величину Uпн.
Характеристике на повышение напряжения (кривая 2) соответствует такой ток возбуждения, чтобы при номинальной нагрузке генератора напряжение на его зажимах было равно номинальному, после чего нагрузка генератора уменьшается.
С уменьшением нагрузки (тока в якоре) также снижается как падение напряжения в сопротивлении обмотки якоря и щеточных контактах, так и размагничивающее действие реакции якоря, что вызывает повышение напряжения.
При изменении нагрузки от номинальной до 0 напряжение на зажимах генератора увеличивается на величину Uпв.
В генераторах параллельного возбуждения при постоянном сопротивлении цепи возбуждения RB ток возбуждения не остается постоянным, так как зависит от напряжения на зажимах генератора, которое при изменении нагрузки меняется.

Внешняя характеристика генератора параллельного возбуждения

В генераторах независимого возбуждения увеличение нагрузки вызывает понижение напряжения под воздействием падения напряжения в сопротивлении машины и реакции якоря (кривая 1 на изо, б).
В генераторах параллельного возбуждения при уменьшении напряжения также уменьшается ток возбуждения, что вызывает уменьшение магнитного потока и понижение напряжения.
Следовательно, при увеличении нагрузки напряжение на зажимах генератора этого типа уменьшается в большей мере (кривая 2), чем в генераторах независимого возбуждения.

Уменьшение внешнего сопротивления нагрузки вызывает увеличение тока до некоторого значения Iмакс, не превышающего номинальный ток более чем
в 2 - 2,5 раза. При дальнейшем уменьшении внешнего сопротивления ток уменьшается и при коротком замыкании будет значительно меньше номинального.
При коротком замыкании генератора параллельного возбуждения ток равен нулю, и обмотка возбуждения не создает магнитного потока.Поэтому в обмотке якоря будет эдс только от остаточного магнитного потока Е0, имеющая малое значение, и, следовательно, ток короткого замыкания будет также мал.
Внешняя характеристика на повышение напряжения у генератора параллельного возбуждения (кривая3) имеет такой же вид, как у генератора независимого возбуждения.

 

Внешняя характеристика генератора последовательного возбуждения

Для генератора последовательного возбуждения внешняя характеристика показана на изо, в. В генераторах этого типа ток возбуждения равен току якоря (Iв = I), и при холостом ходе (I = 0) в обмотке якоря будет создана эдс Е0 за счет остаточного магнетизма.
С увеличением нагрузки также возрастет ток в обмотке возбуждения, что вызывает увеличение эдс (кривая 1).
Напряжение на зажимах генератора при нагрузке меньше эдс вследствие падения напряжения в сопротивлении машины и реакции якоря (кривая 2).

Таким образом, у генераторов послед. возбуждения напряжение резко меняется с изменением нагрузки, поэтому они не нашли применения.
В генераторах смешанного возбуждения возможно согласное и встречное включение последовательной и параллельной обмоток.
При согласном включении обмоток возбуждения результирующая магнитодвижущая сила, создающая магнитный поток, равна сумме магнитодвижущих сил параллельной и последовательной обмоток, а при встречном включении — разности этих магнитодвижущих сил.

Внешняя характеристика генератора смешанного возбуждения

На изо, г показаны внешние характеристики генератора смешанного возбуждения.
С увеличением нагрузки такого генератора уменьшается напряжение на его зажимах в результате падения напряжения в его сопротивлении и реакции якоря.
Однако с увеличением нагрузки возрастает также ток в последовательной обмотке возбуждения.
Поэтому при согласном включении обмоток увеличение нагрузки вызывает увеличение магнитного потока и эдс обмотки якоря.

Если эдс с повышением нагрузки возрастает на величину, равную понижению напряжения генератора, так как падает напряжение в его сопротивлении и реакции якоря, то напряжение на зажимах генератора будет практически оставаться неизменным при изменении нагрузки от холостого хода до номинальной (кривая 1).
Такой генератор, называемый нормально возбужденным, не требует регулировки тока возбуждения при изменениях нагрузки.
При уменьшении числа витков последовательной обмотки эдс с возрастанием нагрузки будет увеличиваться в меньшей степени и не будет компенсировать понижения напряжения, так что напряжение на зажимах генератора будет уменьшаться (кривая 2), т. е. генератор недовозбужден.
Если число витков последовательной обмотки возбуждения больше, чем то, которое соответствует нормальному возбуждению машины, то генератор окажется перевозбужденным, и напряжение на его зажимах будет возрастать с увеличением нагрузки (кривая 3).
При встречном включении обмоток возбуждения внешняя характеристика подобна внешней характеристике генератора параллельного возбуждения (кривая 4), однако токи максимальный Iмакс и короткого замыкания у генератора смешанного возбуждения будут меньше соответствующих токов генератора параллельного возбуждения в результате размагничивающего действия магнитодвижущих сил последовательной обмотки.
Регулировочная характеристика генератора представляет собой зависимость тока возбуждения от тока нагрузки, снимаемая при постоянном напряжении на зажимах генератора.
Регулировочная характеристика генератора показывает, в какой мере следует изменить ток в обмотке возбуждения для того, чтобы напряжение на зажимах генератора оставалось постоянным при изменении тока нагрузки.


41. Реакция якоря в машине постоянного тока

Под реакцией якоря понимают явление воздействия магнитного поля, создаваемого током якоря, на магнитное поле главных полюсов.

При холостом ходе генератора магнитное поле машины образовано только главными полюсами (рис. 1.10, а). Оно симметрично относительно оси полюсов и его ось совпадает с осью полюсов. Когда генератор работает с нагрузкой, по обмотке якоря протекает ток, который создает свое магнитное поле (рис. 1.10.б), называемое полем якоря. Ось магнитного поля якоря совпадает с линией, соединяющей щетки, т.е. с геометрической нейтралью, и перпендикулярна оси главных полюсов. При вращении якоря распределение тока в проводниках якоря остается неизменным и поле якоря — неподвижным в пространстве. Индукция этого поля пропорциональна току в якоре.

Рис. 1.10

При работе генератора с нагрузкой поле якоря накла­дывается на поле полюсов. В генераторе создаётся результирующее поле (рис 1.10, В), повернутое по направлению вращения якоря на некоторый угол у относительно поля главных полюсов. Физическая нейтральная линия оказывается повернутой на тот же угол относительно геометрической нейтральной линии. При изменении нагрузки индукция поля якоря изменяется, изменяется и угол .

Результаты смещения магнитного поля. Смещение физической нейтральной линии вызывает нежелательные последствия, приводящие к ухудшению работы генератора: Ø уменьшается ЭДС, так как щетки оказываются установленными в точках, между которыми разность потенциалов не максимальная;

Ø переключение проводников обмотки якоря из одной параллельной ветви в другую происходит не на физической нейтрали, а на геометрической, где расположены щетки и где результирующее поле В′ ≠ 0, что, как будет показано в следующем параграфе, приводит к искрению щеток и обгоранию коллекторных пластин;

Ø индукция магнитного поля под полюсами распределяется неравномерно; под краем полюса, на который якорь набегает, она уменьшается, а под краем полюса, с которого сбегает, – увеличивается (штриховая линия на рис. 1.7) настолько, что может создаться насыщение сбегающего края полюса и зубцов якоря. В результате появится продольная размагничивающая составляющая поля якоря, направленная против поля главных полюсов, что также приведет к уменьшению ЭДС якоря. Кроме того, в части проводников, находящихся в зоне магнитного насыщения, наводится значительная ЭДС, которая может вызвать пробой изоляции между соседними коллекторными пластинами и повышенное искрение на коллекторе.

Смещение магнитного поля двигателя. У двигателя постоянного тока при том же направлении тока в якоре направление вращения якоря по сравнению с генератором противоположное (штриховая стрелка на рис. 1.10, в), а картина распределения полей одинаковая. Результирующее поле и физическая нейтральная линия оказываются повернутыми на угол против направления вращения якоря.

Это приводит к нежелательным последствиям: уменьшается вращающий момент двигателя, так как часть проводников параллельной ветви, расположенных между щеткой и физической нейтралью, будет находиться в зоне полюса противоположной полярности – эта часть проводников будет создавать тормозной момент.

Как и у генератора, возможно искрение щеток и обгорание коллектора, а также появление продольного размагничивающего поля.

Способы уменьшения влияния реакции якоря. Наиболее действенным и распространенным средством уменьшения влияния реакции якоря на работу машины является применение дополнительных полюсов. Дополнительные полюсы устанавливаются на геометрической нейтральной линии между главными полюсами. Компенсационная обмотка включается последовательно с обмоткой якоря и обмоткой дополнительных полюсов. Магнитное поле компенсационной обмотки всегда направлено навстречу магнитному полю якоря и таким образом оно компенсирует поле якоря в зоне главных полюсов.

 


Поделиться:

Дата добавления: 2015-04-21; просмотров: 349; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты