Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Раскройте устройство и технологические методы изготовления полупроводниковых диодов.




Германиевые точечные диоды обыч­но изготовляются из германия n-типа со сравнительно большим удельным сопротивлением. К пластинке германия приваривают проволочку из вольфрама, покрытого индием. Индий является для германия акцептором. Полученная об­ласть германия р-типа работает в ка­честве эмиттера. Для изготовления кремниевых точечных диодов исполь­зуются кремний n-типа и игла, покры­тая алюминием, который служит акцеп­тором для кремния.

Принцип устройства точечного дио­да показан на рисунке 2.8. Тонкая за­остренная проволочка (игла) с нанесенной на нее примесью приваривается при помощи импульса тока к пластинке по­лупроводника с определенным типом электропроводности. При этом из иглы в основной полупроводник диффундиру­ют примеси, которые создают область с другим типом электропроводности. Этот процесс называется формовкой диода (см. п. 1.4). Таким образом, около иглы образуется миниатюрный n-р-переход полусферической формы. Следовательно, разница между точечными и плоскост­ными диодами заключается в площади nр перехода.

Диффузионный метод изготовления n–р-перехода основан на том, что атомы примеси диффундируют в основной полупроводник (см. п.1.4). Примесное вещество при этом обычно находится в газооб­разном состоянии. Для того чтобы диф­фузия была интенсивной, основной полу­проводник нагревают до более высокой температуры, чем при методе сплавления. Например, пластинку германия n-типа нагревают до 900 °С и помещают в пары индия. Тогда на поверхности пластинки образуется слой германия р-типа. Изменяя длительность диффу­зии, можно довольно точно получать слой нужной толщины. После охлажде­ния его удаляют путем травления со всех частей пластинки, кроме одной гра­ни. Диффузионный слой играет роль эмиттера. От него и от основной пластинки делают выводы. При диффу­зионном методе атомы примеси прони­кают на относительно большую глуби­ну в основной полупроводник, и по­этому n–р-переход получается плавным, т. е. в нем толщина области изменения концентрации примеси сравнима с тол­щиной области объемных зарядов.

На исходной полупроводниковой пластине кремния n-типа получают плёнку окисла SiO2 методом оксидного маскирования (см. п.1.4), которую затем покрывают слоем свёточувствительного вещества — фоторезиста (рисунок 2.10 а). После этого поверхность через специальную маску (фотошаблон) засвечивается ультрафиолетовым светом (рисунок 2.10 б). Затем слой фоторезиста проявляется с помощью специ­альных проявителей. При этом облученные участки фоторезиста задубливаются и переходят в нерастворимое состояние, а необлученные растворяются. Далее осуществляется травление пленки окисла, и получается "окно" для диффузии примесей. После этого специальным составом удаляют слой фо­торезиста (рисунок 2.10 в). Через образовавшееся с помощью фотолитографии "окно" проводят локальную диффузию примесей в исходную пластинку кремния и получают p-n-переход (рисунок 2.10 г).

Планарно-эпитаксиальные диоды позволяют увеличить пробивное напряжение и получить при этом небольшую ёмкость p-n переходе

 

 

В технике высоких частот часто используется диод Шотки, полученный на основе контакта металл-полупроводник. Конструктивно диоды Шотки выполняют в виде пластины низкоомного кремния, на которую нанесена высокоомная эпитаксиальная плёнка с электропроводностью того же тока.

мезадиодыСначала на пластине основного полупроводника диффузионным методом создаётся слой с другим типом электропроводности. Далее эта пластинка покрывается специальной маской и подвергается травлению. Маска защищает от травления много небольших участков. Именно в этих защищённых областях остаются n-p-переходы малого размера, которые возвышаются над поверхностью пластинки в виде «столиков» /Затем пластинка срезается на отдельные части – диоды. Особенностью мезадиодов является уменьшенный объём базовой области. За счёт этого сокращается время накопления и рассасывания носителей в базе. Одновременное изготовление большого числа диодов из одной пластинки обеспечивает также сравнительно малый разброс их характеристик и параметров.

 

Какое свойство p-n перехода используется в выпрямительных диодах?Приведите ВАХ выпрямительных диодов и объясните ее поведение. Назовите основные характеристики выпрямительных диодов. В чем состоят особенности высокочастотных и арсенид-галлиевых выпрямительных диодов.

В выпрямительных диодах используется вентельное свойство электронно-дырочного перехода, т.е. при прямом напряжении сопротивление р-n-перехода мало, а при обратном напряжении – велико. Показано условное графическое обозначение выпрямительного диода Из приведенных ВАХ видно, что для кремниевых диодов по сравнению с германиевым прямые ветви характеристик, построенных при одних и тез же температурах, смещены в право. Т.е для получения одинаковых прямых токов необходимо к кремниевым диодам прикладывать большее прямое напряжение, чем к германиевым.При увеличении температуры прямая ветвь характеристик становится более крутой. Обратный ток в кремниевых диодах меньше, чем у германиевых. Основными параметрами выпрямительных диодов являются:1. Максимально допустимое обратное напряжение диода Uобр max — значение напряжения, приложенного в обратном на­правлении, которое диод может выдержать в течение длитель­ного времени без нарушения его работоспособности (десятки — тысячи В).2. Средний выпрямленный ток диода Iвп ср — среднее за период значение выпрямленного постоянного тока, протека­ющего через диод (сотни мА — десятки А).3. Импульсный прямой ток диода Iпри— пиковое значение импульса тока при заданной максимальной длительности, скважности и формы импульса.4. Средний обратный ток диода Ioбр ср — среднее за период значение обратного тока (доли мкА — несколько мА).5. Среднее прямое напряжение диода при заданном среднем значении прямого тока Uпр ср (доли В).6. Средняя рассеиваемая мощность диода Рсрд — средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях (сотни мВт—десятки и более Вт).7. Дифференциальное сопротивление диода rдиф — отношение приращения напряжения на диоде к вызвавшему его малому приращению тока (единицы — сотни Ом).(высокачаст)Выпрямительные диоды широко применяются на высоких частотах (диапазон частот от 30 МГц до 300 МГц) для детектирования колебаний высокой частоты и используются в радиотехнической, телевизионной и другой аппаратуре. По технологии изготовления они могут быть точечными, диффузионными или иметь мезаструктуру. В качестве высокочастотных выпрямительных диодов используется диод Шотки [6]. (арсенид) Арсенидгаллиевые выпрямительные диоды, имеют одина­ковую с кремниевыми диодами коммутируемую мощность, от­личаются в несколько раз меньшими массогабаритными пока­зателями, так как позволяют работать из-за повышенной ши­рины запрещенной зоны при температурах перехода до +240... +280 °С. Столь высокие допустимые значения температуры перехода обеспечивают также выигрыш в массе радиоэлек­тронных устройств за счет уменьшения теплорассеивающих элементов,


Поделиться:

Дата добавления: 2015-04-21; просмотров: 204; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты