КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Вопрос 2. 2.Митоз, кариокинез, или непрямое деление,—универсальный, широко распространенный способ деления клеток2.Митоз, кариокинез, или непрямое деление,—универсальный, широко распространенный способ деления клеток. При этом конденсированные и уже редуплицированные хромосомы переходят в компактную форму митотических хромосом, образуется веретено деления, участвующее в сегрегации и переносе хромосом (ахроматиновый митотический аппарат), происходит расхождение хромосом к противоположным полюсам клетки и деление тела клетки (цитокинез, цитотомия). Процесс непрямого деления клеток принято подразделять на несколько основных фаз: профаза, метафаза, .анафаза, телофаза. Профаза. После окончания S-периода количество ДНК в интерфазном ядре равно 4 с, так как произошло удвоение хромосомного материала. Однако морфологически регистрировать удвоение числа хромосом в этой стадии не всегда удается. Собственно хромосомы как нитевидные плотные тела начинают обнаруживаться микроскопически в начале процесса деления клетки, а именно в профазе митотического деления клетки. Если попытаться подсчитать число хромосом в профазе, то их количество будет равно 2 n. Но это ложное впечатление, потому что в профазе каждая из хромосом двойная, что является результатом их редупликации в интерфазе. В профазе эти сестринские хромосомы тесно соприкасаются друг с другом, взаимно спирализуясь одна относительно другой, поэтому трудно увидеть двойственность всей структуры в целом. Позднее хромосомы в каждой такой паре начинают обособляться, раскручиваться. Двойственность хромосом в митозе наблюдается у живых клеток в конце профазы, когда видно, что общее их число в начинающей делиться клетке равно 4 n. Следовательно, уже в начале профазы хромосомы состояли из двух сестринских хромосом, или, как их еще называют, хроматид. Число их (4 n) в профазе точно соответствует количеству ДНК (4с). Параллельно конденсации хромосом в профазе происходят исчезновение, дезинтеграция ядрышек в результате инактивации рибосомных генов в зоне ядрышковых организаторов. Одновременно с этим в середине профазы начинается разрушение ядерной оболочки, исчезают ядерные поры, оболочка распадается сначала на фрагменты, а затем на мелкие мембранные пузырьки. Меняются в это время и структуры, связанные с синтезом белка. Происходит уменьшение количества гранулярного эндоплазматического ретикулума, он распадается на короткие цистерны и вакуоли, количество рибосом на его мембранах резко падает. Значительно (до 25%) редуцируется число полисом как на мембранах, так и в гиалоплазме, что является признаком общего падения уровня синтеза белка в делящихся клетках. Второе важнейшее событие при митозе тоже происходит во время профазы — это образование веретена деления. В профазе уже репродуцировавшиеся в S-периоде центриоли начинают расходиться к противоположным концам клетки, где будут позднее формироваться полюса веретена. К каждому полюсу отходит по двойной центриоли, диплосоме. По мере расхождения диплосом начинают формироваться микротрубочки, отходящие от периферических участков одной из центриолей каждой диплосомы. Сформированный аппарат деления в животных клетках имеет веретеновидную форму и состоит из нескольких зон: двух зон центросфер с центриолями внутри них и промежуточной между ними зоны волокон веретена. Во всех этих зонах имеется большое число микротрубочек. Микротрубочки в центральной части этого аппарата, в собственном веретене деления, так же как микротрубочки центросфер, возникают в результате полимеризации тубулинов в зоне центриолей и около специальных структур — кинетохоров, расположенных в области центромерных перетяжек хромосом. В веретене деления принято различать два типа волокон: идущие от полюса к центру веретена и хромосомные, соединяющие хромосомы с одним из полюсов. В индукции роста микротрубочек веретена в зоне полюса деления принимает участие одна из центриолей диплосомы, а именно материнская. Такое новообразование и рост нитей (пучков микротрубочек) веретена происходят в профазе митоза. В то же время видны появляющиеся на хромосомах в местах первичных перетяжек пластинчатые кинетохоры, около которых позднее также появляются микротрубочки, идущие в направлении полюсов деления. Таким образом, у животных клеток Центриоли и хромосомные кинетохоры являются центрами организации микротрубочек веретена деления. Метафаза занимает около трети времени всего митоза. Во время метафазы заканчивается образование веретена деления, а хромосомы выстраиваются в экваториальной плоскости веретена, образуя так называемую метафазную пластинку хромосом, или материнскую звезду. К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи лежат параллельно друг другу, между ними хорошо видна разделяющая их щель. Последним местом, где контакт между хроматидами сохраняется, является центромера. Анафаза. Хромосомы все одновременно теряют связь друг с другом в области центромер и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам клетки. Скорость движения хромосом равномерная, она может достигать 0,2— 0,5 мкм/мин. Анафаза — самая короткая стадия митоза (несколько процентов от всего времени), но за это время происходит ряд событий. Главным из них является обособление двух идентичных наборов хромосом и перемещение их в противоположные концы клетки. Движение хромосом складываетсяиз двух процессов, расхождения их по направлению к полюсам и дополнительного расхождения самих полюсов. Предположения о сокращении микротрубочек как о механизме расхождения хромосом в митозе не подтвердились, поэтому многие исследователи поддерживают гипотезу “скользящих нитей”, согласно которой соседние микротрубочки, взаимодействуя друг с другом (например, хромосомные и полюсные) и с сократительными белками, тянут хромосомы к полюсам. Телофаза начинается с остановки разошедшихся диплоидных (2 n) наборов хромосом (ранняя телофаза) и кончается началом реконструкции нового интерфазного ядра (поздняя телофаза, ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез, цитотомия). В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки — к полюсу, теломерные — к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы образуется новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в новый G1-период. Важное событие телофазы — разделение клеточного тела, цитотомия, или цитокинез, который происходит у клеток животных путем образования перетяжки в результате впячивания плазматической мембраны внутрь клетки. При этом в кортикальном, подмембранном слое цитоплазмы располагаются сократимые элементы типа актиновых фибрилл, ориентированные циркулярно в зоне экватора клетки. Сокращение такого/кольца приведет к впячиванию плазматической мембраны в области этого кольца, что завершается разделением клетки перетяжкой на две. При повреждении митотического аппарата (действие холода или агентов, вызывающих деполимеризацию тубулинов) может произойти или задержка митоза в метафазе, или рассеивание хромосом. При нарушениях репродукции центриолей могут возникать многополюсные и асимметричные митозы и т. д. Нарушения цитотомии приводят к появлению гигантских ядер или многоядерных клеток. Морфология митотических хромосом Как интерфазные, так митотические хромосомы состоят из элементарных хромосомных фибрилл — молекул ДНП. В последнее время принято считать, что на каждую хромосому приходится одна гигантская фибрилла ДНП, сложно уложенная в относительно короткое тельце — собственно митотическую хромосому. Установлено, что в митотической хромосоме существуют боковые петли этой гигантской молекулы дезоксирибонуклеопротеида. Боковые петли хромосом в вытянутом состоянии могут достигать 30 мкм. При их компактизации (спирализации) образуются структуры промежуточного характера — так называемые хромонемные фибриллы. Взаимодействие этих компонентов хромосом друг с другом и их взаимная агрегация приводят к конечной компактизации хроматина в виде митотической хромосомы. Морфологию митотических хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. У большинства хромосом удается легко найти зону первичной перетяжки (центромеры), которая делит хромосому на два плеча. Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины — субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом называют акроцентрическими. В области первичной перетяжки расположен кинетохор. От этой зоны во время митоза отходят микротрубочки клеточного веретена, связанные с перемещением хромосом при делении клетки. Некоторые хромосомы имеют, кроме того, вторичные перетяжки, располагающиеся вблизи одного из концов хромосомы и отделяющие маленький участок — спутник хромосомы. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. В этих местах локализована ДНК, ответственная за синтез рибосомных РНК. Плечи хромосом оканчиваются теломерами — конечными участками. Размеры хромосом, как и их число, у разных организмов варьируют в широких пределах. Совокупность числа, размеров и особенностей строения хромосом называется кариотипом данного вида. При специальных методах окраски хромосомы неравномерно воспринимают красители: вдоль их длины наблюдается чередование окрашенных и неокрашенных участков — дифференциальная неоднородность хромосомы. Важно то, что каждая хромосома имеет свой, неповторимый рисунок такой дифференциальной окраски. Применение методов дифференциальной окраски позволило детально изучить строение хромосом. Хромосомы человека принято подразделять по их размерам на 7 групп (А, В, С, D, Е, F, G). Если при этом легко отличить крупные (1, 2) хромосомы от мелких (19, 20), метацентрические от акроцентрических (13), то внутри групп трудно различить одну хромосому от другой. Так в группе С6 и С7 хромосомы схожи между собой, так же как и с Х-хромосомой. Дифференциальное окрашивание позволяет четко отличить эти хромосомы друг от друга. Эндорепродукция Эндорепродукция — образование клеток с увеличенным содержанием ДНК. Появление таких клеток происходит в результате полного отсутствия или незавершенности отдельных этапов митоза. Существует несколько моментов в процессе митоза, блокада которых приводит к его остановке и появлению полиплоидных клеток, т. е. клеток с увеличенным числом хромосомных наборов. Блокада может наступить при переходе от G2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто нарушается функция и целость веретена деления. Наконец, следствием нарушения цитотомии также может явиться появление полиплоидных клеток — одноядерных и двуядерных. При блокаде митоза в самом его начале, при переходе его от G2 к профазе, клетки приступают к следующему циклу репликации, приводящему к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме увеличения их объема. Появление полиплоидных соматических клеток может происходить в результате блокады деления клеточного тела. В печени взрослых млекопитающих встречаются, кроме диплоидных, тетра- и октаплоидные (8 n) клетки, а также двуядерные клетки разной степени плоидности. Процесс полиплоидизации этих клеток происходит следующим образом. После S-периода клетки, обладающие 4 с количеством ДНК, вступают в митотическое деление, проходят все его стадии, включая телофазу, но не приступают к цитотомии. Таким образом, образуется двуядерная клетка (2 X 2 n). Если она снова проходит 5-период, то оба ядра в такой клетке будут содержать по 4 с ДНК и 4 n хромосом. Такая двуядерная клетка входит в митоз, на стадии метафазы происходит объединение хромосомных наборов (общее число хромосом равно 8 n), а затем — нормальное деление, в результате которого образуются две тетраплоидные клетки. Этот процесс попеременного появления двуядерных и одноядерных клеток приводит к появлению ядер с 8 n, 16 n и даже 32 n количеством хромосом. Подобным способом образуются Полиплоидные клетки в печени, в эпителии мочевого пузыря, в Пигментном эпителии сетчатки, в ацинарных отделах слюнных и поджелудочной желез, мегакариоциты красного костного мозга. Необходимо отметить, что полиплоидизация соматических клеток встречается на терминальных периодах развития клеток, тканей и органов. Она большей частью характерна для специализированных, дифференцированных клеток и не встречается при генеративных процессах, таких как эмбриогенез (исключая провизорные органы) и образование половых клеток; нет полиплоидии среди стволовых клеток.
|