![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Электрическое сопротивлениеКак уже говорилось, обозначается электрическое сопротивление буквой R. Единицей измерения Электрическое сопротивление проводника — это противодействие, которое атомы или молекулы проводника оказывают направленному перемещению зарядов. Сопротивление R зависит от длины проводника l, площади поперечного сечения S и материала проводника р:
Удельное сопротивление (р) — это сопротивление проводника из данного материала длиной 1 м площадью поперечного сечения 1 мм2 при температуре 20 °С. Величина удельного сопротивления некоторых проводников приведена в Приложении 4.
Однако на практике сечение проводников выражают в мм2.
Величину, обратную сопротивлению, называют проводимостью
Элементы электрической цепи, характеризующиеся сопротивлением R, называют резистивными, а промышленные изделия, предназначенные для выполнения роли сопротивления электрическому току, называются резисторами. Резисторы бывают регулируемые и нерегулируемые, проволочные и непроволочные, пленочные, композиционные и др. Сопротивление проводников зависит от их температуры.
где R2 — сопротивление проводника при конечной температуре tO2; R1 — сопротивление проводника при начальной температуре tO1, а — температурный коэффициент сопротивления. Температурный коэффициент сопротивления определяет относительное изменение сопротивления проводника при изменении его температуры на 1°С. Единицей измерения температурного коэффициента сопротивления является
Для различных проводников температурный коэффициент сопротивления имеет различные значения (Приложение 4). Для металлических проводников (Приложение 4) температурный коэффициент сопротивления а положителен, т. е. с ростом температуры сопротивление металлических проводников увеличивается (2.9). Объясняется это тем, что при нагревании увеличивается подвижность атомов и молекул металла, а следовательно, и число столкновений с ними электрических зарядов увеличивается. Таким образом, возрастает противодействие направленному перемещению этих зарядов, т. е. увеличивается сопротивление металлического проводника. Для проводников второго рода (электролитов) и угля температурный коэффициент сопротивления а отрицателен, т. е. с ростом температуры их сопротивление уменьшается (2.9). Объясняется это тем, что с повышением температуры ослабляются связи между положительно и отрицательно заряженными частицами, что приводит к усилению ионизации, обуславливающей электропроводность, т. е. уменьшается сопротивление электролитов и угля. Для большинства электролитов
Температурный коэффициент сопротивления а проводников определяет их применение. Например, такие сплавы, как константан и манганин, имеют малый температурный коэффициент сопротивления (Приложение 4), т. е. их сопротивление почти не зависит от температуры, поэтому их применяют в качестве материала для изготовления шунтов и добавочных сопротивлений, служащих для расширения пределов измерения амперметров и вольтметров, на точность которых не должна влиять температура. При понижении температуры некоторых металлов и сплавов до очень низких значений, порядка нескольких градусов Кельвина (0ОК ≈ —273 °С), возникает явление сверхпроводимости. Сверхпроводником называют проводник, сопротивление которого L практически равно нулю. В сверхпроводнике совершенно не выделяется тепло при прохождении тока, так как электроны при направленном движении не встречают препятствий. В нем невозможно существование магнитного поля. Следует ожидать широкого применения сверхпроводников в электротехнике в будущем. 7.
Источник электрической энергии осуществляет направленное перемещение электрических зарядов по всей замкнутой цепи (рис. 2.3). Энергия W, которую затрачивает или может затратить источник на перемещение единицы положительного заряда по всей замкнутой цепи, характеризует - электродвижущую силу источника Е ЭДС):
|