Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Аэробная очистка сточных вод




Биологическая переработка отходов опирается на ряд дисциплин: биохимию, генетику, химию, микробиологию, вычислительную технику. Усилия этих дисциплин концентрируются на трех основных направлениях:

  • деградация органических и неорганических токсичных отходов;
  • возобновление ресурсов для возврата в круговорот веществ углерода, азота, фосфора, азота и серы;
  • получение ценных видов органического топлива.

При очистке сточных вод выполняют четыре основные операции:

1. При первичной переработке происходит усреднение и осветление сточных вод от механических примесей (усреднители, песколовки, решетки, отстойники).

2. На втором этапе происходит разрушение растворенных органических веществ при участии аэробных микроорганизмов. Образующийся ил, состоящий главным образом из микробных клеток, либо удаляется, либо перекачивается в реактор. При технологии, использующей активный ил, часть его возвращается в аэрационный тенк.

3. На третьем (необязательном) этапе производится химическое осаждение и разделение азота и фосфора.

4. Для переработки ила, образующегося на первом и втором этапах, обычно используется процесс анаэробного разложения. При этом уменьшается объем осадка и количество патогенов, устраняется запах и образуется ценное органическое топливо - метан.

На практике применяются одноступенчатые и многоступенчатые системы очистки. Одноступенчатая схема очистки сточной воды представлена на рис. 6.

Рис. 6. Принципиальная схема очистных сооружений:

1 - пескоуловители; 2 - первичные отстойники; 3 - аэротенк; 4 - вторичные отстойники; 5 - биологические пруды; 6 - осветление; 7 - реагентная обработка; 8 - метатенк; АИ - активный ил

Сточные воды поступают в усреднитель, где происходит интенсивное перемешивание стоков с различным качественным и количественным составом. Перемешивание осуществляется за счет подачи воздуха. В случае необходимости в усреднитель подаются также биогенные элементы в необходимых количествах и аммиачная вода для создания определенного значения рН. Время пребывания в усреднителе составляет обычно несколько часов. При очистке фекальных стоков и отходов нефтепереработки необходимым элементом очистных сооружений является система механической очистки - песколовки и первичные отстойники. В них происходит отделение очищаемой воды от грубых взвесей и нефтепродуктов, образующих пленку на поверхности воды.

Биологическая очистка воды происходит в аэротенках. Аэротенк представляет собой открытое железобетонное сооружение, через которое проходит сточная вода, содержащая органические загрязнения и активный ил. Суспензия ила в сточной воде на протяжении всего времени нахождения в аэротенке подвергается аэрации воздухом. Интенсивная аэрация суспензии активного ила кислородом приводит к восстановлению его способности сорбировать органические примеси.

В основе биологической очистки воды лежит деятельность активного ила (АИ) или биопленки, естественно возникшего биоценоза, формирующегося на каждом конкретном производстве в зависимости от состава сточных вод и выбранного режима очистки. Активный ил представляет собой темно-коричневые хлопья, размером до нескольких сотен микрометров. На 70% он состоит из живых организмов и на 30% - из твердых частиц неорганической природы. Живые организмы вместе с твердым носителем образуют зооглей - симбиоз популяций микроорганизмов, покрытый общей слизистой оболочкой. Микрооганизмы, выделенные из активного ила относятся к различным родам: Actynomyces, Azotobacter, Bacillus, Bacterium, Corynebacterium, Desulfomonas, Pseudomonas, Sarcina и др. Наиболее многочисленны бактерии рода Pseudomonas, о всеядности которых упоминалось ранее. В зависимости от внешней среды, которой в данном случае является сточная вода, та или иная группа бактерий может оказаться преобладающей, а остальные становятся спутниками основной группы.

Существенная роль в создании и функционировании активного ила принадлежит простейшим. Функции простейших достаточно многообразны; они сами не принимают непосредственного участия в потреблении органических веществ, но регулируют возрастной и видовой состав микроорганизмов в активном иле, поддерживая его на определенном уровне. Поглощая большое количество бактерий, простейшие способствуют выходу бактериальных экзоферментов, концентрирующихся в слизистой оболочке и тем самым принимать участие в деструкции загрязнений. В активных илах встречаются представители четырех классов простейших: саркодовые (Sarcodina), жгутиковые инфузории (Mastigophora), реснитчатые инфузории (Ciliata), сосущие инфузории (Suctoria).

Показателем качества активного ила является коэффициент протозойности, который отражает соотношение количества клеток простейших микроорганизмов к количеству бактериальных клеток. В высококачественном иле на 1 миллион бактериальных клеток должно приходиться 10-15 клеток простейших. При изменении состава сточной воды может увеличится численность одного из видов микроорганизмов, но другие культуры все равно остаются в составе биоценоза.

На формирование ценозов активного ила могут оказывать влияние и сезонные колебания температуры, обеспеченность кислородом, присутствие минеральных компонентов. Все это делает состав или сложным и практически невоспроизводимым. Эффективность работы очистных сооружений зависит также от концентрации микроорганизмов в сточных водах и возраста активного ила. В обычных аэротенках текущая концентрация активного ила не превышает 2-4 г/л.

Увеличение концентрации ила в сточной воде приводит к росту скорости очистки, но требует усиления аэрации, для поддержания концентрации кислорода на необходимом уровне. Таким образом, аэробная переработка стоков включает в себя следующие стадии: 1) адсорбция субстрата на клеточной поверхности; 2) расщепление адсорбированного субстрата внеклеточными ферментами; 3) поглощение растворенных веществ клетками; 4) рост и эндогенное дыхание; 5) высвобождение экскретируемых продуктов; 6) "выедание" первичной популяции организмов вторичными потребителями. В идеале это должно приводить к полной минерализации отходов до простых солей, газов и воды. На практике очищенная вода и активный ил из аэротенка подаются во вторичный отстойник, где происходит отделение активного ила от воды. Часть активного ила возвращается в систему очистки, а избыток активного ила, образовавшийся в результате роста микроорганизмов, поступает на иловые площадки, где обезвоживается и вывозится на поля. Избыток активного ила можно также перерабатывать анаэробным путем. Переработанный активный ил может служить и как удобрения, и как корм для рыб, скота.

Система полной доочистки может состоять из множества элементов, которые определяются дальнейшим назначением сточной воды. Возможно применение биологических прудов, где биологически очищенная вода проходит осветление и насыщается кислородом. Пруды также относятся к системе биологической очистки, в которой под воздействием биоценоза активного ила происходит окисление органических примесей. Состав биоценозов биологических прудов определяется глубиной нахождения данной группы микроорганизмов. В верхних слоях развиваются аэробные культуры, в придонных - факультативные аэробы и анаэробы, способные осуществлять процессы метанового брожения или восстановление сульфатов. Насыщение воды кислородом происходит за счет процессов фотосинтеза, осуществляемого водорослями, из которых особенно широко представлены Clorella, Scenedesmus, встречаются эвгленовые, вольвоксовые и т.д. В прудах также в той или иной мере представлена микро- и макрофауна: простейшие, черви, коловратки,насекомые и др. В биопрудах из воды хорошо удаляются нефтепродукты, фенолы и другие органические соединения. В некоторых случаях воду после биологической очистки подвергают реагентной обработке - хлорированию или озонированию.

Интенсифицировать процессы биологической очистки можно путем аэрации суспензии активного ила чистым кислородом. Этот процесс можно осуществить в модифицированных аэротенках закрытого типа - окситенках, с принудительной аэрацией сточной воды. В отличие от аэротенков в биофильтрах (или перколяционных фильтрах) клетки микроорганизмов находятся в неподвижном состоянии, так как прикреплены к поверхности пористого носителя. Образовавшуюся таким образом биопленку можно отнести к иммобилизованным клеткам. В этом случае иммобилизована не монокультура, а целый консорциум, неповторимый по качественному и количественному составу и различающийся в зависимости от его местонахождения на поверхности носителя. Очищаемая вода контактирует с неподвижным носителем, на котором иммобилизованы клетки и за счет их жизнедеятельности происходит снижение концентрации загрязнителя.

Преимущество применения биофильтров состоит в том, что формирование конкретного ценоза приводит к практически полному удалению всех органических примесей. Недостатками этого метода можно считать:

  • нереальность использования стоков с высоким содержанием органических примесей;
  • необходимость равномерного орошения поверхности биофильтра сточными водами, подаваемыми с постоянной скоростью;
  • сточные воды перед подачей должны быть освобождены от взвешенных частиц во избежание заиливания.

В качестве носителей можно использовать керамику, щебень, гравий, керамзит, металлический или полимерный материал с высокой пористостью. Для биофильтров характерно наличие противотока воды, которая поступает сверху и воздуха, подающегося снизу. Оторвавшиеся частицы микробной пленки после отделения их во вторичном отстойнике не возвращаются обратно в биофильтр, а идут на иловые площадки или в анаэробную преработку.

Существуют также системы, сочетающие в себе как систему биофильтров, так и активного ила в аэротенках. Это так называемые аэротенки-вытеснители. В аэрируемую сточную воду помещают либо стеклоерши, либо создают систему сеток внутри тенка, в которые вкладываются прокладки из пористого полиэфира. В пустотах этих прокладок и на поверхности стеклоершей происходит накопление биоценоза активного ила. Носитель периодически удаляется из тенка, биомасса снимается, после чего носитель возвращается в реактор.

Система с иммобилизованными на мобильном носителе клетками отличается от биофильтров своей экономичностью, так как используются высокие концентрации микроорганизмов и нет необходимости осаждать конечные продукты. Такая система может найти применение в очистке локальных стоков, с узким спектром загрязнений. Их целесообразно очищать в самостоятельных биологических системах, не смешивая со стоками других производств. Это позволяет получить биоценозы микроорганизмов , адаптированные к данному узкому спектру загрязнений, при этом скорость и эффективность очистки резко возрастают.

Преимущества внедрения анаэробной технологии очистки с добычей биогаза

  1. Высокая степень очистки по ХПК/БПК
  2. Малый прирост избыточного активного ила в метантенке
  3. Улучшение водоотдающих свойств сброженного осадка
  4. Получение безопасного в санитарном отношении осадка
  5. Производства большого количества биогаза
  6. Автономность, энергетическая независимость предприятия
  7. Сокращение выбросов вредных веществ в атмосферу
  8. Длительный срок службы оборудования
  9. Высокий уровень автоматизации
  10. Низкие эксплуатационные затраты
  11. Короткий срок окупаемости

При этом произведенный биогаз является альтернативой природному газу и может использоваться для внутренних нужд предприятия.

Метантенк представляет собой цилиндрический железобетонный резервуар с коническим днищем и герметическим перекрытием, в верхней части которого имеется колпак для сбора газа, откуда газ отводится для дальнейшего использования.

Осадок в метантенке перемешивается и подогревается с помощью особых устройств.

В зависимости от температуры, при которой происходит брожение, различают два типа процесса — мезофильное сбраживание, происходящее при температуре 30—35° С, и термофильное сбраживание, происходящее при температуре 50—55°С.

За рубежом в основном применяется ме-зофильный процесс. В СССР наряду с ме-зофильным сбраживанием широкое распространение получил и термофильный процесс.

Термофильное сбраживание отличается большей интенсивностью распада органических веществ и заканчивается примерно в 2 раза быстрее, за счет чего вдвое сокращается требуемый объем сооружений. На 4.50 показаны зависимости сроков сбраживания от температуры, а также ход процесса при мезофильном и термофильном сбраживании.

При термофильном сбраживании достигается полная дегельминтизация осадка, тогда как в условиях мезофильных температур погибает лишь 50—80% яиц гельминтов.

Основным преимуществом мезофильного сбраживания является обеспечение процесса теплом, получаемым от сжигания газов брожения. Подогрев осадка до термофильных температур, особенно в зимнее время, требует дополнительного расхода топлива, что влечет за собой увеличение эксплуатационных затрат.

Осадок, сброженный в термофильных условиях, значительно труднее обезвоживается, чем осадок, сброженный при мезофильном процессе, поэтому выбор температурного режима брожения должен производиться с учетом принятой схемы дальнейшей обработки осадка.

На современных очистных станциях сбраживанию обычно подвергается смесь сырого осадка и активного ила. Минерализация органических веществ осадка и ила в процессе брожения сопровождается выделением продуктов распада в газ и в иловую воду и приводит к значительным изменениям в химическом составе сброженной смеси.

 

var begun_auto_pad = 54169719; var begun_block_id = 112320391;

Общий объем бродящей смеси практически не изменяется и, так как сухое вещество в результате распада уменьшается, влажность осадка в процессе брожения возрастает. Возрастает и зольность, поскольку зольная часть осадка при сбраживании остается неизменной, а сухое вещество уменьшается.

Эффективность работы метантенков оценивается по величине распада беззольного вещества, который подсчитывают либо по выходу газа РТ, либо по убыли беззольного вещества Рьэ- В первом случае массу газа выражают в процентах от массы загруженного беззольного вещества. Распад по газу показывает, какая часть беззольного вещества превратилась в процессе брожения в газ. Значение Рбз подсчитывают по данным анализа загруженного и выгруженного осадков на влажность и зольность. Убыль беззольного вещества выражают в процентах от массы загруженного беззольного вещества.

Величины Рт и Рбз могут совпадать или значительно отличаться друг от друга. Для метантенков высоконагружаемых Рт обычно больше Рбз-Обратное соотношение Рба>Рг характерно для низконагружаемых метантенков с длительным периодом сбраживания, когда значительная часть продуктов распада после окончания газовыделения поступает в иловую воду.

Выход газа при сбраживании в метантенках обусловливается распадом только жиров, белков и углеводов, составляющих основную массу беззольного вещества осадков.

Родигер на основании обобщения обширных литературных данных и многочисленных экспериментов по сбраживанию углеводов, жиров и белков, присущих городским канализационным осадкам, показал, что состав и удельный выход газа при распаде каждого компонента осадка различны

Наибольшая масса газа образуется при распаде жиров, наименьшая— при распаде белков. Поскольку в составе активного ила преобладают белки, выход газа при его сбраживании оказывается меньшим, чем при сбраживании осадка из первичных отстойников.

Образующийся в метантенках газ состоит в основном из метана — 60—67% и угольной кислоты—30—33%, содержание водорода не превышает 1—2%, азот составляет около 0,5%. Высокое содержание метана в газе обусловливается распадом жиров и белков. Углеводы дают газ с большим содержанием угольной кислоты.

Установлено, что полного сбраживания беззольного вещества осадка и каждого из его компонентов независимо от условий сбраживания в метантенке добиться невозможно. Все они имеют свой предел сбраживания, зависящий от их химического состава.

 

Характерной особенностью отходящих промышленных газов является присутствие в них разнообразных дурно пахнущих веществ (ДПВ) органического происхождения. Они обнаруживаются главным образом по запаху. Устранение запаха означает в то же время и устранение органических веществ. В данной работе представлены способы биохимической очистки (дезодорации) газовоздушных выбросов производства микробного синтеза.

Отходящие газы микробиологических производств характеризуются наличием широкого спектра ДПВ, присутствующих в них в следовых количествах. Одоранты представлены продуктами метаболизма культур – продуцентов и сопутствующей микрофлоры, соединениями, образующимися в процессах биологической, термической и окислительной деструкции биомассы. В качестве модельной культуры был выбран продуцент битоксибациллина Bac. thuringiensis var.subsp. thuring шт. 98, обладающий резким и интенсивным запахом. Сотрудниками ОАО «Биохиммаш» проводились лабораторные исследования методов биохимической очистки и адсорбции на углях воздуха, удаляемого из ферментатора


Поделиться:

Дата добавления: 2015-04-21; просмотров: 116; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты