КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Необхідні умови існування екстремуму.Теорема.1. Якщо диференційована функція має в точці екстремум, то . Д о в е д е н н я. Нехай, наприклад, функція має в точці максимум. Тоді при достатньо малому , а тому
Переходячи до границі при , одержимо:
Згідно з умовою - диференційована функція в точці . Тому одержані границі дорівнюють . Таким чином, маємо і , отже . Теорема 2. У точці екстремуму функції кількох змінних кожна її частинна похідна першого порядку або дорівнює нулю, або не існує. Д о в е д е н н я. Нехай функція в точці має максимум – для конкретності. Зафіксуємо значення всіх змінних, крім однієї, наприклад , поклавши їх рівними між собою: . Тоді функція стає функцією однієї змінної : . За умовою теореми функція має максимум, тобто,
Остання нерівність означає, що функція як функція однієї змінної в точці має максимум. На основі вище доведеної теореми виводимо, що в точці похідна дорівнює нулю або не існує. Аналогічно доведемо, що і всі інші частинні похідні першого порядку в точці дорівнюють нулю або не існують. Наслідок. В точці екстремуму диференційованої функції виконуються рівності (6.87) Означення. Точки, в яких частинні похідні першого порядку деякі функції дорівнюють нулю або не існують, називаються критичними точками. Із доведеної теореми витікає, що екстремум функції кількох змінних може досягатись лише в критичних точках. Для диференційованої функції двох змінних критичні точки знаходяться із системи рівнянь (6.88) Приклад. Знайти критичні точки функції
Р о з в ’ я з о к. Прирівнюючи до нуля частинні похідні даної функції, одержуємо систему рівнянь для знаходження координат критичних точок:
Функція має чотири критичні точки: .
|