Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Теоретическое введение. Решение матричных уравнений




Решение матричных уравнений

Цель работы

1. Нахождение обратной матрицы.
2. Решение матричного уравнения c помощью обратной матрицы.

Теоретическое введение

Матрицей называется прямоугольная таблица чисел. При сложении матриц складываются их соответствующие элементы,а при умножения матрицы на число на него умножается каждый элемент этой матрицы.

.

(2.1)

Произведение матрицы A на матрицу B определено только в том случае, когда число столбцов матрицы A равно числу cтрок матрицы B. В результате умножения получается матрица C = A · B, у которой столько же строк, сколько в матрице A, и столько же столбцов, сколько в матрице B :

Матрица A B C = A·B
Число строк m n m
Число столбцов n l l


Запишем матрицы A и B в виде

.
Обозначим элементы матрицы C = A · B через c, .
Тогда
.
По определению элемент ci j , матрицы C = A · B равен скалярному произведению i-й строки матрицы A (i – первый индекс элемента ci j ) на j-й столбец матрицы B ( j - второй индекс элемента ci j ), т.е.

ci j = (ai 1 , ai 2 ,..., ai n ) · (b1 j , b2 j ,..., bn j ) = ai 1 · b1 j + ai 2 · b2 j + ...+ ai n · bn j (2.2)

Наряду с матрицей A будем рассматривать матрицу, столбцами которой являются строки матрицы A. Эту матрицу называют транспонированной к A и обозначают через AT .
Совокупность элементов a11, a22 , ..., an n , квадратной матрицы A = (ai j ), n = m, называется главной диагональю матрицы.
Матрица, у которой моменты, стоящие на главной диагонали, равны единице, а все остальные равны нулю, называется единичной матрицей, и обозначается буквой E. Так, единичная матрица 3-го порядка имеет вид
.
Единичная матрица обладает замечательным свойством:
умножение квадратной матрицы любого порядка на соответствующую единичную не меняет исходную матрицу т.е. A · E = E · A = A. Это свойства и объясняет ее название.
Матрица A-1 называется обратной матрицей к квадратной матрице A, если

A·A-1 = A-1·A = E (2.3)

Если определитель |A| квадратной матрицы A не равен нулю, то существует и, притом единственная, матрица A-1.


Поделиться:

Дата добавления: 2015-05-08; просмотров: 100; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты