КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Представление результатов экспериментовСтр 1 из 6Следующая ⇒ История возникновения планирования эксперимента
Планирование эксперимента – продукт нашего времени, однако истоки его теряются в глубине веков. Истоки планирования эксперимента уходят в глубокую древность и связаны с числовой мистикой, пророчествами и суевериями. Это собственно не планирование физического эксперимента, а планирование числового эксперимента, т.е. расположение чисел так, чтобы выполнялись некоторые строгие условия, например, на равенство сумм по строкам, столбцам и диагоналям квадратной таблицы, клеточки которой заполнены числами натурального ряда. Такие условия выполняются в магических квадратах, которым, по-видимому, принадлежит первенство в планировании эксперимента. Согласно одной легенде примерно в 2200 г. до н.э. китайский император Ю выполнял мистические вычисления с помощью магического квадрата, который был изображен на панцире божественной черепахи. Квадрат императора Ю 4 9 2 3 5 7 8 1 6 Клетки этого квадрата заполнены числами от 1 до 9, и суммы чисел по строкам, столбцам и главным диагоналям равны 15. В 1514 г. немецкий художник Альбрехт Дюрер изобразил магический квадрат в правом углу своей знаменитой гравюры-аллегории «Меланхолия». Два числа в нижнем горизонтальном ряду 15 и 14) составляют год создания гравюры. В этом состояло своеобразное «приложение» магического квадрата. Квадрат Дюрера 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 В течение нескольких веков построение магических квадратов занимало умы индийских, арабских, немецких, французских математиков. В настоящее время магические квадраты используются при планировании эксперимента в условиях линейного дрейфа, при планировании экономических расчетов и составлении рационов питания, в теории кодирования и т.д. Построение магических квадратов является задачей комбинаторного анализа, основы которого в его современном понимании заложены Г. Лейбницем. Он не только рассмотрел и решил основные комбинаторные задачи, но и указал на большое практическое применение комбинаторного анализа: к кодированию и декодированию, к играм и статистике, к логике изобретений и логике геометрии, к военному искусству, грамматике, медицине, юриспруденции, технологии и к комбинации наблюдений. Последняя область применения наиболее близка к планированию эксперимента. Одной из комбинаторных задач, имеющей прямое отношение к планированию эксперимента, занимался известный петербургский математик Л. Эйлер. В 1779 г. он предложил задачу о 36 офицерах как некоторый математический курьез. Он поставил вопрос, можно ли выбрать 36 офицеров 6 рангов из 6 полков по одному офицеру каждого ранга от каждого полка и расположить их в каре так, чтобы в каждом ряду и в каждой шеренге было бы по одному офицеру каждого ранга и по одному от каждого полка. Задача эквивалентна построению парных ортогональных 6x6 квадратов. Оказалось, что эту задачу решить невозможно. Эйлер высказал предположение, что не существует пары ортогональных квадратов порядка п=1 (mod 4). Задачей Эйлера, в частности, и латинскими квадратами вообще занимались впоследствии многие математики, однако почти никто из них не задумывался над практическим применением латинских квадратов. В настоящее время латинские квадраты являются одним из наиболее популярных способов ограничения на рандомизацию при наличии источников неоднородностей дискретного типа в планировании эксперимента. Группировка элементов латинского квадрата, благодаря своим свойствам (каждый элемент появляется один и только один раз в каждой строке и в каждом столбце квадрата), позволяет защитить главные эффекты от влияния источника неоднородностей. Широко используются латинские квадраты и как средство сокращения перебора в комбинаторных задачах. Возникновение современных статистических методов планирования эксперимента связано с именем Р. Фишера. С 1918 г. он начал свою известную серию работ на Рочемстедской агробиологической станции в Англии. В 1935 г. появилась его монография «Design of Experiments», давшая название всему направлению. Среди методов планирования первым был дисперсионный анализ (кстати, Фишеру принадлежит и термин «дисперсия»). Фишер создал основы этого метода, описав полные классификации дисперсионного анализа (однофакторный и многофакторный эксперименты) и неполные классификации дисперсионного анализа без ограничения и с ограничением на рандомизацию. При этом он широко использовал латинские квадраты и блок-схемы. Вместе с Ф. Йетсом он описал их статистические свойства. В 1942 г. А. Кишен рассмотрел планирование по латинским кубам, которое явилось дальнейшим развитием теории латинских квадратов. Затем Р. Фишер независимо опубликовал сведения об ортогональных гипер-греко-латинских кубах и гипер-кубах. Вскоре после этого 1946–1947 гг.) Р. Рао рассмотрел их комбинаторные свойства. Дальнейшему развитию теории латинских квадратов посвящены работы X. Манна 1947–1950 гг.). Исследования Р. Фишера, проводившиеся в связи с работами по агробиологии, знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йегс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью полного факторного эксперимента является необходимость ставить сразу большое число опытов. В 1945 г. Д. Финни ввел дробные реплики от факторного эксперимента. Это позволило резко сократить число опытов и открыло дорогу техническим приложениям планирования. Другая возможность сокращения необходимого числа опытов была показана в 1946 г. Р. Плакеттом и Д. Берманом, которые ввели насыщенные факторные планы. В 1951 г. работой американских ученых Дж. Бокса и К. Уилсона начался новый этап развития планирования эксперимента. Эта работа подытожила предыдущие. В ней ясно сформулирована и доведена до практических рекомендаций идея последовательного экспериментального определения оптимальных условий проведения процессов с использованием оценки коэффициентов степенных разложений методом наименьших квадратов, движения по градиенту и отыскания интерполяционного полинома (степенного ряда) в области экстремума функции отклика («почти стационарной» области). В 1954–1955 гг. Дж. Бокс, а затем Дж. Бокс и П. Юл показали, что планирование эксперимента можно использовать при исследовании физико-химических механизмов процессов, если априори высказаны одна или несколько возможных гипотез. Здесь планирование эксперимента пересекалось с исследованиями по химической кинетике. Интересно отметить, что кинетику можно рассматривать как метод описания процесса с помощью дифференциальных уравнений, традиции которого восходят к И. Ньютону. Описание процесса дифференциальными уравнениями, называемое детерминистическим, нередко противопоставляется статистическим моделям. Бокс и Дж. Хантер сформулировали принцип ротатабельности для описания «почти стационарной» области, развивающейся в настоящее время в важную ветвь теории планирования эксперимента. В той же работе показана возможность планирования с разбиением на ортогональные блоки, указанная ранее независимо де Бауном. Дальнейшим развитием этой идеи было планирование, ортогональное к неконтролируемому временному дрейфу, которое следует рассматривать как важное открытие в экспериментальной технике – значительное увеличение возможностей экспериментатора.
Математическое планирование эксперимента в научных исследованиях Основные понятия и определения
Под экспериментом будем понимать совокупность операций совершаемых над объектом исследования с целью получения информации о его свойствах. Эксперимент, в котором исследователь по своему усмотрению может изменять условия его проведения, называется активным экспериментом. Если исследователь не может самостоятельно изменять условия его проведения, а лишь регистрирует их, то это пассивный эксперимент. Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Можно получить хорошо аппроксимирующую математическую модель, если целенаправленно применяется активный эксперимент. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение. Опыт – это отдельная экспериментальная часть. План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов. Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления. В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами. Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности. Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости – Y=F(Х1, Х2, …, Хn), о которой мы имеем лишь общее представление. Величина Y – называется «отклик», а сама зависимость Y=F(Х1, Х2, …, Хn) – «функция отклика». Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода – оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента. Независимые переменные Х1, Х2, …, Хn – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы. Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 – гиперкуб. При выборе диапазонов изменения факторов нужно учитывать их совместимость, т.е. контролировать, чтобы в этих диапазонах любые сочетания факторов были бы реализуемы в опытах и не приводили бы к абсурду. Для каждого из факторов указывают граничные значения
, i=1,… n.
Регрессионный анализ функции отклика предназначен для получения ее математической модели в виде уравнения регрессии
,
где В1, …, Вm – некоторые коэффициенты; е – погрешность. Среди основных методов планирования, применяемых на разных этапах исследования, используют: · планирование отсеивающего эксперимента, основное значение которого выделениеиз всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению; · планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами; · планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные); · планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования; · планирование при изучении динамических процессов и т.д. Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране – в трудах Г.К. Круга, Е.В. Маркова и др. В настоящее время методы планирования эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др.
Представление результатов экспериментов
При использовании методов планирования эксперимента необходимо найти ответы на 4 вопроса: · Какие сочетания факторов и сколько таких сочетаний необходимо взять для определения функции отклика? · Как найти коэффициенты В0, В1, …, Bm? · Как оценить точность представления функции отклика? · Как использовать полученное представление для поиска оптимальных значений Y? Геометрическое представление функции отклика в факторном пространстве Х1, Х2, …, Хn называется поверхностью отклика (рис. 1). Рис. 1. Поверхность отклика
Если исследуется влияние на Y лишь одного фактора Х1, то нахождение функции отклика – достаточно простая задача. Задавшись несколькими значениями этого фактора, в результате опытов получаем соответствующие значения Y и график Y =F(X) (рис. 2).
Рис. 2. Построение функции отклика одной переменной по опытным данным
По его виду можно подобрать математическое выражение функции отклика. Если мы не уверены, что опыты хорошо воспроизводятся, то обычно опыты повторяют несколько раз и получают зависимость с учетом разброса опытных данных. Если факторов два, то необходимо провести опыты при разных соотношениях этих факторов. Полученную функцию отклика в 3х-мерном пространстве (рис. 1) можно анализировать, проводя ряд сечений с фиксированными значениями одного из факторов(рис. 3). Вычлененные графики сечений можно аппроксимировать совокупностью математических выражений.
Рис. 3. Сечения поверхности отклика при фиксированных откликах (а) и переменных (б, в)
При трех и более факторах задача становится практически неразрешимой. Если и будут найдены решения, то использовать совокупность выражений достаточно трудно, а часто и не реально.
Применение математического планирования эксперимента в научных исследованиях
В современной математической теории оптимального планирования эксперимента существует 2 основных раздела: 1. планирование эксперимента для изучения механизмов сложных процессов и свойств многокомпонентных систем. 2. планирование эксперимента для оптимизации технологических процессов и свойств многокомпонентных систем. Планирование эксперимента – это выбор числа опытов и условий их проведения необходимых и достаточных для решения поставленной задачи с требуемой точностью. Эксперимент, который ставится для решений задач оптимизации, называется экстремальным. Примерами задач оптимизации являются выбор оптимального состава многокомпонентных смесей, повышение производительности действующей установки, повышение качества продукции и снижение затрат на её получение. Прежде чем планировать эксперимент необходимо сформулировать цель исследования. От точной формулировки цели зависит успех исследования. Необходимо также удостовериться, что объект исследования соответствует предъявляемым ему требованиям. В технологическом исследовании целью исследования при оптимизации процесса чаще всего является повышение выхода продукта, улучшение качества, снижение себестоимости. Эксперимент может проводиться непосредственно на объекте или на его модели. Модель отличается от объекта не только масштабом, а иногда природой. Если модель достаточно точно описывает объект, то эксперимент на объекте может быть перенесён на модель. Для описания понятия «объект исследования» можно использовать представление о кибернетической системе, которая носит название чёрный ящик.
Стрелки справа изображают численные характеристики целей исследования и называются выходными параметрами (y) или параметрами оптимизации. Для проведения эксперимента необходимо воздействовать на поведение чёрного ящика. Все способы воздействия обозначаются через «x» и называются входными параметрами или факторами. Каждый фактор может принимать в опыте одно из нескольких значений, и такие значения называются уровнями. Фиксированный набор уровней и факторов определяет одно из возможных состояний чёрного ящика, одновременно они являются условиями проведения одного из возможных опытов. Результаты эксперимента используются для получения математической модели объекта исследования. Использование для объекта всех возможных опытов приводит к абсурдно большим экспериментам. В связи с этим эксперименты необходимо планировать. Задачей планирования является выбор необходимых для эксперимента опытов, методов математической обработки их результатов и принятия решений. Частный случай этой задачи – планирование экстремального эксперимента. То есть эксперимента поставленного с целью поиска оптимальных условий функционирования объекта. Таким образом, планирование экстремального эксперимента – это выбор количества и условий проведения опытов, минимально необходимых для отыскания оптимальных условий. При планировании эксперимента объект исследования должен обладать обязательными свойствами:
|