КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Критерии оценки неизвестных коэффициентов модели регрессии
В ходе регрессионного анализа была подобрана форма связи, которая наилучшим образом отражает зависимость результативной переменной у от факторной переменной х: y=f(x). Необходимо оценить неизвестные коэффициенты модели регрессии β0…βn . Для определения оптимальных коэффициентов модели регрессии возможно применение следующих критериев: 1) критерий суммы квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β (рассчитанных на основе функции регрессии f(x)): Данный критерий определения оптимальных коэффициентов модели регрессии получил название метода наименьших квадратов или МНК. К основным преимуществам данного метода относятся: а) все расчёты сводятся к механической процедуре нахождения коэффициентов; б) доступность полученных математических выводов. Недостаток метода наименьших квадратов заключается в излишней чувствительности оценок к резким выбросам, встречающимся в исходных данных. Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам: Суть минимизации функционала наименьших квадратов F состоит в определении таких значений коэффициентов β0…βn , при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β была бы минимальной; 2) критерий суммы модулей отклонений наблюдаемых значений результативной переменной у от теоретических значений β (рассчитанных на основе функции регрессии f(x )): Главное преимущество данного критерия заключается в устойчивости полученных оценок к резким выбросам в исходных данных, в отличие от метода наименьших квадратов. К недостаткам данного критерия относятся: а) сложности, возникающие в процессе вычислений; б) зачастую большим отклонениям в исходных данных следует придавать больший вес для уравновешивания их в общей сумме наблюдений; в) разным значениям оцениваемых коэффициентов β0…βn могут соответствовать одинаковые суммы модулей отклонений. Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам: Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn , при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β была бы минимальной; 3) критерий, имеющий вид: где g – это мера или вес, с которой отклонение (yi-f|xi,β|) входит в функционал F. В качестве примера веса g можно привести функцию Хубера, которая при малых значениях переменной х является квадратичной, а при больших значениях х – линейной:
где с – ограничения функции. Данный критерий определения наилучших оценок коэффициентов модели регрессии β0…βn является попыткой объединения достоинств двух предыдущих критериев. Основное преимущество данного критерия заключается в том, что оценки неизвестных коэффициентов, найденные с его помощью, являются более устойчивыми к случайным выбросам в исходных данных, чем оценки, полученные методом наименьших квадратов. Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам: Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений ỹ с учётом заданных весов g была бы минимальной.
12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова
Определение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели. Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид: Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными). Если уравнение модели содержит две экономические переменные – эндогенную yiи предопределенную xi, то модель имеет вид: Данная модель называется моделью линейной парной регрессии и содержит три неизвестных параметра: β0 , β1 , σ . (3) Предположим, что имеется выборка: (х1, y1), (х2, y2),… (хn , yn) (4) Тогда в рамках исследуемой модели данные величины связаны следующим образом: y1 = a0 + a1 * x1 + u1, y2 = a0 + a1 * x2 + u2, (5) … yn= a0 + a1 * x n + u n. Данная система называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели или схемой Гаусса-Маркова. Компактная запись схемы Гаусса-Маркова: где – вектор-столбец известных значений эндогенной переменной yiмодели регрессии; – вектор-столбец неизвестных значений случайных возмущений εi; – матрица известных значений предопределенной переменной xi модели; β = (β0 β1 )Т (10) – вектор неизвестных коэффициентов модели регрессии. Обозначим оценку вектора неизвестных коэффициентов модели регрессии как Данная оценка вычисляется на основании выборочных данных (7) и (9) с помощью некоторой процедуры:
где P (X, ỹ) – символ процедуры. Процедура (12) называется линейной относительно вектора (7) значений эндогенной переменной yi , если выполняется условие: где (14) – матрица коэффициентов, зависящих только от выборочных значений (9) предопределенной переменной хi. Теорема Гаусса-Маркова . Пусть матрица Х коэффициентов уравнений наблюдений (6) имеет полный ранг, а случайные возмущения (8) удовлетворяют четырем условиям: E(ε1) = E(ε2) = … = E(εn) = 0, (15) Var(ε1) = Var(ε2) = … = Var(εn) = σ2(16) Cov(εi, εj) = 0 при i≠j(17) Cov(xi,εj) = 0 при всех значениях i и j (18) В этом случае справедливы следующие утверждения: а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид: б) линейная несмещенная эффективная оценка (19) обладает свойством наименьших квадратов: в) ковариационная матрица оценки (19) вычисляется по правилу: г) несмещенная оценка параметра σ2 модели (2) находится по формуле:
Следствие теоремы Гаусса-Маркова. Оценка доставляемая процедурой (19) метода наименьших квадратов, может быть вычислена в процессе решения системы двух линейных алгебраических уравнений: Данная система называется системой нормальных уравнений. Ее коэффициенты и свободные члены определяются по правилам: [x] = x1 + x2 +…+ xn, [y] = y1 + y2 +…+ yn, (24) x2] = x12 + x22 +…+ xn2, [xy] = x1*y1 + x2*y2 + … + xn*yn . Явный вид решения системы (23):
|