КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии. Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии. Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью парной регрессии вида: yi=β0+β1xi . Неизвестные коэффициенты β0 и β1 линейной модели парной регрессии определяются с помощью метода наименьших квадратов. В результате мы получим оценённую модель регрессии вида: После этого необходимо рассчитать остатки модели регрессии по формуле: Полученные остатки модели регрессии возводятся в квадрат: Далее для обнаружения гетероскедастичности остатков данной модели регрессии необходимо рассчитать коэффициент Спирмена между квадратами регрессионных остатков и значениями факторной переменной xi . Коэффициент Спирмена является аналогом парного коэффициента корреляции, однако, с его помощью можно оценить тесноту зависимости не только между количественными, но и между количественными и качественными переменными. В качестве зависимой переменной будет выступать квадрат остатков модели регрессии в качестве независимой переменной – значения факторной переменной xi . Значения независимой переменной xi ранжируется и располагается по возрастанию. Ранги обозначаются как Rx . Далее проставляются ранги зависимой переменной обозначаемые как Re . Коэффициент Спирмена рассчитывается по формуле: где d – ранговая разность (Rx– Re ); n – количество пар вариантов. Далее необходимо проверить значимость вычисленного коэффициента Спирмена. При проверке значимости коэффициента Спирмена выдвигается основная гипотеза о его незначимости: Н0: Кспир=0. Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида: Н1: Кспир≠0. Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента. Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента. Критическое значение t-критерия tкрит(а, n-2) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-2 ) – число степеней свободы, n – объём выборочной совокупности. Наблюдаемое значение t-критерия при проверке основной гипотезы вида Н0: Кспир=0 рассчитывается по формуле:
При проверке гипотез возможны следующие ситуации. Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит , то основная гипотеза отвергается, и между переменной xi и остатками регрессионной модели существует взаимосвязь, т. е. в модели присутствует гетероскедастичность. Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|≤tкрит , то основная гипотеза принимается, и в модели парной регрессии гетероскедастичность отсутствует. Если тест Глейзера проводился для линейной модели множественной регрессии, то при принятии основной гипотезы делается вывод о том, что гетероскедастичность не зависит от выбранной переменной xmi .
|