Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Последовательно-параллельная схема гибридного автомобиля




Читайте также:
  1. I. СХЕМА КРАТКОЙ АМБУЛАТОРНОЙ ИСТОРИИ БОЛЕЗНИ.
  2. Абсорбционный способ осушки газа. Достоинства и недостатки. Принципиальная схема.
  3. Абсорбционный способ подготовки газа. Технологическая схема, назначение и устройство аппаратов. Параметры работы,
  4. Анализ общей ситуации и конкуренции в отрасли. Схема М.Портера.
  5. Антикоррозийная зашита автомобиля.
  6. Асинхронный двигатель. Т-и Г-образная схема замещения. Основные уравнения двигателя в рабочем режиме.
  7. Б) Схема взаимодей-я клиента и т/ф
  8. Билет 10. Разветвляющийся алгоритм. Блок – схема алгоритма. Формы команды ветвления IF
  9. Биполярный транзистор. Технологическое исполнение. Принцип действия. УГО. Схема замещения. Транзистор как источник тока. Режимы работы транзистора.
  10. Блок схема

При последовательно-параллельной схеме двигатель внутреннего сгорания и электродвигатель соединены через планетарный редуктор. При этом мощность каждого из двигателей может передаваться на ведущие колеса одновременно в соотношении от 0 до 100% от номинальной мощности. В отличие от параллельной схемы в последовательно-параллельную схему добавлен генератор, обеспечивающий энергией работу электродвигателя.

Гибридные автомобили, использующие последовательно-параллельную схему, носят названиеFull Hybrid(дословно - полный гибрид). Известными полными гибридами являются автомобили Toyota Prius, Lexus RX 450h, Ford Escape Hybrid. В этом сегменте рынка гибридных автомобилей господствует компания Toyota и ее система Hybrid Synergy Drive, HSD.

Силовая установка системы HSD представляет собой двигатель внутреннего сгорания (соединенный с водило планетарного редуктора), электродвигатель (соединенный с коронной шестерней планетарного редуктора), генератор (соединенный с солнечной шестерней планетарного редуктора).

Двигатель внутреннего сгорания работает по циклу Аткинсона, при котором реализуются посредственные мощностные показатели на низких оборотах, соответственно достигается большая топливная экономичность и меньшие вредные выбросы.

В работе системы Hybrid Synergy Drive выделяются следующие режимы:

  1. Режим электромобиля, при котором ДВС выключен, а аккумуляторная батарея питает электродвигатель.
  2. Режим движения с постоянной (крейсерской) скоростью, при котором мощность от ДВС распределяется между ведущими колесами и генератором. Генератор в свою очередь питает электродвигатель, мощность которого суммируется с мощностью ДВС. При необходимости производится зарядка аккумуляторной батареи.
  3. Форсированный режим, при котором к ДВС присоединяется электродвигатель, питающийся от аккумуляторной батареи, обеспечивая импульс мощности.
  4. Экономичный режим, при котором аккумуляторная батарея питает генератор. Генератор преобразует электрическую энергию в механическую, замедляя вращение ДВС. При этом крутящий момент двигателя не уменьшается, а достигается топливная экономичность.
  5. Режим торможения, при котором электродвигатель работает как генератор, а электроэнергия используется для вращения солнечной шестерни в противоположную сторону, замедляя скорость движения автомобиля.
  6. Режим зарядки аккумулятора, осуществляющийся с помощью ДВС и генератора.
  1. Назначение, устройство, принцип работы и основные неисправности системы охлаждения; тепловой режим двигателя и контроль температуры охлаждающей жидкости

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:



· нагрев воздуха в системе отопления, вентиляции и кондиционирования;

· охлаждение масла в системе смазки;

· охлаждение отработавших газов в системе рециркуляции отработавших газов;

· охлаждение воздуха в системе турбонаддува;

· охлаждение рабочей жидкости в автоматической коробке передач.

В зависимости от способа охлаждения различают следующие виды систем охлаждения: жидкостная (закрытого типа), воздушная (открытого типа) и комбинированная. В системе жидкостного охлаждения тепло от нагретых частей двигателя отводится потоком жидкости. Воздушная система для охлаждения использует поток воздуха. Комбинированная система объединяет жидкостную и воздушную системы.



На автомобилях наибольшее распространение получили система жидкостного охлаждения. Данная система обеспечивает равномерное и эффективное охлаждение, а также имеет меньший уровень шума. Поэтому, устройство и принцип действия системы охлаждения рассмотрены на примере системы жидкостного охлаждения.

Конструкция системы охлаждения бензинового и дизельного двигателей подобны. Система охлаждения двигателя включает множество элементов, среди которых радиатор охлаждающей жидкости, масляный радиатор, теплообменник отопителя, вентилятор радиатора, центробежный насос, а также расширительный бачок и термостат. В схему системы охлаждения включена «рубашка охлаждения» двигателя. Для регулирования работы системы используются элементы управления.

Радиатор предназначен для охлаждения нагретой охлаждающей жидкости потоком воздуха. Для увеличения теплоотдачи радиатор имеет специальное трубчатое устройство.

Наряду с основным радиатором в системе охлаждения могут устанавливаться масляный радиатор и радиатор системы рециркуляции отработавших газов. Масляный радиатор служит для охлаждения масла в системе смазки.

Радиатор системы рециркуляции отработавших газов охлаждает отработавшие газы, чем достигается снижение температуры сгорания топливно-воздушной смеси и образования оксидов азота. Работу радиатора отработавших газов обеспечивает дополнительный насос циркуляции охлаждающей жидкости, включенный в систему охлаждения.

Теплообменник отопителя выполняет функцию, противоположную радиатору системы охлаждения. Теплообменник нагревает, проходящий через него, воздух. Для эффективной работы теплообменник отопителя устанавливается непосредственно у выхода нагретой охлаждающей жидкости из двигателя.



Для компенсации изменения объема охлаждающей жидкости вследствие температуры в системе устанавливается расширительный бачок. Заполнение системы охлаждающей жидкостью обычно осуществляется через расширительный бачок.

Циркуляция охлаждающей жидкости в системе обеспечивается центробежным насосом. В обиходе центробежный насос называютпомпой. Центробежный насос может иметь различный привод: шестеренный, ременной и др. На некоторых двигателях, оборудованных турбонаддувом, для охлаждения наддувочного воздуха и турбокомпрессора устанавливается дополнительный насос циркуляции охлаждающей жидкости, подключаемый блоком управления двигателем.

Термостат предназначен для регулировки количества охлаждающей жидкости, проходящей через радиатор, чем обеспечивается оптимальный температурный режим в системе. Термостат устанавливается в патрубке между радиатором и «рубашкой охлаждения» двигателя.

На мощных двигателях устанавливается термостат с электрическим подогревом, который обеспечивает двухступенчатое регулирование температуры охлаждающей жидкости. Для этого в конструкции термостата предусмотрено три рабочих положения: закрытое, частично открытое и полностью открытое. При полной нагрузке на двигатель с помощью электрического подогрева термостата производится его полное открытие. При этом температура охлаждающей жидкости снижается до 90°С, уменьшается склонность двигателя к детонации. В остальных случаях температура охлаждающей жидкости поддерживается в пределах 105°С.

Вентилятор радиатора служит повышения интенсивности охлаждения жидкости в радиаторе. Вентилятор может иметь различный привод:

· механический (постоянное соединение с коленчатым валом двигателя);

· электрический (управляемый электродвигатель);

· гидравлический (гидромуфта).

Наибольшее распространение получил электрический привод вентилятора, обеспечивающий широкие возможности для регулирования.

Типовыми элементами управления системы охлаждения являются датчик температуры охлаждающей жидкости, электронный блок управления и различные исполнительные устройства.

Датчик температуры охлаждающей жидкости фиксирует значение контролируемого параметра и преобразует его в электрический сигнал. Для расширения функций системы охлаждения (охлаждения отработавших газов в системе рециркуляции отработавших газов, регулирования работы вентилятора и др.) на выходе радиатора устанавливается дополнительный датчик температуры охлаждающей жидкости.

Сигналы от датчика принимает электронный блок управления и преобразует их в управляющие воздействия на исполнительные устройства. Используется, как правило, блок управления двигателем с устанавленным соответствующим программным обеспечением.

В работе системы управления могут использоваться следующие исполнительные устройства: нагреватель термостата, реле дополнительного насоса охлаждающей жидкости, блок управления вентилятором радиатора, реле охлаждения двигателя после остановки.


Дата добавления: 2015-07-26; просмотров: 30; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.03 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты