КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Приближенные вычисленияСтр 1 из 3Следующая ⇒ Выполняя вычисления, всегда необходимо помнить о той точности, которую нужно или которую можно получить. Недопустимо вести вычисления с большой точностью, если данные задачи не допускают или не требуют этого (например, семизначная таблица логарифмов при вычислениях с числами, имеющими 5 верных значащих цифр - избыточна). Твёрдое знакомство с правилами приближенных вычислений необходимо каждому, кому приходится вычислять. Погрешности Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < Da, то величина Da называется предельной абсолютной погрешностью приближенной величины a. Отношение Da / a = da называется предельной относительной погрешностью; последнюю часто выражают в процентах.
4. .
5. Ко́мпле́ксные чи́сла (устар. Мнимые числа[2]), — расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y — вещественные числа, i — мнимая единица[3].Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других. 6. корни и степени Арифметическим корнем натур.степени nбольше или равно 2 из неотрицательного числа а называется неотрицательное число, n-я степень которого = а. Св-ва:
|