![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гидродинам подобие. Число РейнольдсаПосмотрим, какому условию должны удовлетворять те же геометрически и кинематически подобные потоки для того, чтобы было обеспечено их гидродинамическое подобие при наличии сил вязкости, а, следовательно, и потерь энергии, т.е. при каком условии числа Eu будут одинаковыми для этих потоков. Уравнение Бернулли для этого случая примет вид:
или по аналогии с предыдущими рассуждениями, учтя, что Как видно из последнего уравнения, числа Eu будут иметь одинаковые значения для рассматриваемых потоков, а сами потоки будут подобны друг другу гидродинамически при условии равенства коэффициентов сопротивления (равенство коэффициентов Рассмотрим очень важный в гидравлике случай движения жидкости - движение с трением в цилиндрической трубе, для которого коэффициент трения можно описать формулой Для геометрически подобных потоков отношение Следовательно, для двух подобных потоков I и IIможно записать т. е. напряжения трения пропорциональны динамическим давлениям. Учитывая закон трения Ньютона и тот факт, что в последних уравнениях где индекс у = 0 означает, что производная взята при у = 0, т. е. у стенки трубы. При этом заметим, что закон трения Ньютона применим лишь при ламинарном течении. Однако, как было показано выше, при турбулентном течении в трубах вблизи стенок образуется тонкий ламинарный слой, внутри которого справедлив закон трения Ньютона. Поэтому напряжение трения После умножения и деления на диаметр трубы d и перегруппировки множителей получим:
Здесь буквой С обозначено выражение в квадратных скобках, представляющее собой безразмерный градиент скорости вблизи стенки. Для кинематически подобных потоков величина C одинакова, поэтому после сокращения на С условие динамического подобия потоков перепишем в виде
или, переходя к обратным величинам
В этом заключается критерий подобия Рейнольдса, который можно сформулировать следующим образом: для гидродинамического подобия геометрически и кинематически подобных потоков с учетом сил вязкости требуется равенство чисел Рейнольдса, подсчитанных для любой пары сходственных сечений этих потоков.
|