![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гидродинам подобие. Число ЭйлераВначале рассмотрим наиболее простой случай - напорное движение идеальной жидкости, т. е. такое движение, при котором отсутствуют силы вязкости. Для этого случая уравнение Бернулли для сечений 1-1 и 2-2будет иметь вид: Из условия неразрывности потока расходы в сечениях 1-1 и 2-2 с площадями соответственно Откуда Подставив последнее соотношение в уравнение Бернулли, после переноса членов получим:
После очевидных преобразований и сокращений придём к виду Если два потока геометрически подобны, то правая часть уравнения имеет одно и то же значение, следовательно, левая часть тоже одинакова, т.е. разности давлений в сечениях 1-1 и 2-2 пропорциональны динамическим давлениям:
Таким образом, при напорном движении идеальной несжимаемой жидкости для обеспечения гидродинамического подобия достаточно одного геометрического подобия. Безразмерная величина, представляющая собой отношение разности давлений к динамическому давлению (или разности пьезометрических высот к скоростной высоте), называется коэффициентом давления или числом Эйлера и обозначается Eu. В случае напорного движения в приведённых уравнениях под
где
|