Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Уравнение неразрывности элементарной струйки идеальной жидкости.




Рассмотрим элементарную струйку несжимаемой жидкости при установившемся движении. Выделим сечение 1-1 и 2-2, расположенные на расстоянии l одно от другого (рис.1.23). Здесь Δs1 и Δs2 - площади живых сечений соответственно; u 1 и u2 - скорости; ΔQ1 и ΔQ2 - расхо­ды элементарной струйки в сечениях.

Очевидно, что ΔQ1 = Δs1u1 и ΔQ2 = Δs2u2, причем ΔQ1 втекает в рассматриваемый отсек, а ΔQ 2 - вытекает. Учитывая, что форма элементарной струйки не изменяется с тече­нием времени, поперечный приток и отток невозможен, так как ско­рости на боковой поверхности струйки направлены по касательным к линиям тока, из которых состоит эта боковая поверхность, получаем, что расходы ΔQ1 и ΔQ2 равны, т.е. Δs1u 1 = Δs2u2. Аналогичные соотношения можно написать для любых двух сече­ний элементарной струйки, расположенных вдоль нее: u1Δs1 = u2Δs2 =...= uΔs = ΔQ = const. Это и есть уравнение неразрывности для элементарной струйки несжимаемой жидкости при установившемся движении. Если выделить в потоке два любых сечения, отстоящих на некото­ром расстоянии, то, просуммировав по каждому из живых сечений обе части в уравнении

Таким образом, в отмеченных условиях расход, проходящий через все живые сечения потока, неизменен, несмотря на то что в каждом сече­нии средняя скорость и площадь живого сечения могут быть различны.

т.е. средние скорости обратно пропорциональны площадям живых се­чений потока, которым соответствуют эти средние скорости.

 

 

2. Кач-нное влиян темп на вязкость жидк и газа.

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры. Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры где: μ = динам вязкость в (Па·с) при заданной темп T, μ0 = контрольная вязкость в (Па·с) при некоторой контрольной темп T0, T = заданная темп в К, T0 = контрольная темп в К, C = постоянная Сазерленда для того газа, вязкость которого требуется определить. Эту формулу можно применять для темп в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10%, обусловленной зависимостью вязкости от давления. Вязкость жидкостей . Динамический коэффициент вязкости. Внутреннее трение жидкостей, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона: Коэф вязкости (динамическая вязкость) может быть получен на основе соображений о движениях молекул. будет тем меньше, чем меньше время t «оседлости» молекул. Это приводит к выражению для коэф вязкости, называемому ур-ем Френкеля-Андраде: . Иная формула, представляющая коэф вязкости, была предложена Бачинским. Как показано, коэф вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Эксперименты показали, что между молярным объёмом и коэф вязкости сущ-ет соотношение где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского. Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления. Кинематическая вязкость. В технике, часто приходится иметь дело с величиной и эта величина получила название кинематической вязкости. Здесь — плотность жидкости; — динамическая вязкость. Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В систему СИ эта величина переводится следующим образом: 1 сСт = 1мм2 1c = 10-6 м2 c. Ньютоновские и неньютоновские жидкости. Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье): где — тензор вязких напряжений. Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной.

 

 

39. Неустановившиеся движение жидкости. Что такое инерциальный напор и где он наблюдается?
Неустановившимся (нестационарным) движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости скорость движения и и гидродинамическое давление р – постоянно изменяются, т.е. зависят не только от положения точки в пространстве, но и от времени . Аналитически это условие запишется так:
и .
Примером установившегося движения может быть: движение жидкости в канале, в реке при неизменных глубинах, истечение жидкости из резервуара при постоянном уровне жидкости в нем и др. Неустановившееся движение – это движение жидкости в канале или реке при переменном уровне или при опорожнении резервуара, когда уровень жидкости в нем непрерывно изменяется.

 

 

40. Явление «Гидравлический удар». Уравнение Н.Е. Жуковского.

Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода.

Пусть в конце трубы, по которой движется жидкость со скоростью υ0, произведено мгновенное закрытие крана.

При этом скорость частиц, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается в соответствии с увеличением давления на величину ΔPуд, которое называется ударным. Област в которой происходит увеличение давления, называется ударной волной. Ударная волна распространяется вправо со скоростью ударной волны. Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы - растянутыми. Ударное повышение давления распространится на всю длину трубы. Далее под действием перепада давления ΔPуд частицы жидкости устремятся из трубы в резервуар, причем это течение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-n перемещается обратно к крану с той же скоростью c, оставляя за собой выровненное давление P0 . Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующему давлению P0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0, но направленную теперь в противоположную теперь сторону. С этой скоростью весь объем жидкости стремится оторваться от крана, в результате возникает отрицательная ударная волна под давлением P0 - ΔPуд, которая направляется от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления. Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.

Очевидно, что как только отраженная от резервуара ударная волна под давлением ΔP уд достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится. Если давление P0 невелико (P0 < ΔP уд), то картина изменения амплитуды давления получается несколько иная. Повышение давления при гидравлическом ударе можно определить по формуле ΔPуд = ρυ0c Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле:

где r - радиус трубопровода; E - модуль упругости материала трубы; δ - толщина стенки трубопровода;
K - объемный модуль упругости. Если предположить, что труба имеет абсолютно жесткие стенки, то скорость ударной волны определится из выражения


Поделиться:

Дата добавления: 2015-04-18; просмотров: 284; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты