![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Уравнение неразрывности элементарной струйки идеальной жидкости.Рассмотрим элементарную струйку несжимаемой жидкости при установившемся движении. Выделим сечение 1-1 и 2-2, расположенные на расстоянии l одно от другого (рис.1.23). Здесь Δs1 и Δs2 - площади живых сечений соответственно; u 1 и u2 - скорости; ΔQ1 и ΔQ2 - расходы элементарной струйки в сечениях. Очевидно, что ΔQ1 = Δs1u1 и ΔQ2 = Δs2u2, причем ΔQ1 втекает в рассматриваемый отсек, а ΔQ 2 - вытекает. Учитывая, что форма элементарной струйки не изменяется с течением времени, поперечный приток и отток невозможен, так как скорости на боковой поверхности струйки направлены по касательным к линиям тока, из которых состоит эта боковая поверхность, получаем, что расходы ΔQ1 и ΔQ2 равны, т.е. Δs1u 1 = Δs2u2. Аналогичные соотношения можно написать для любых двух сечений элементарной струйки, расположенных вдоль нее: u1Δs1 = u2Δs2 =...= uΔs = ΔQ = const. Это и есть уравнение неразрывности для элементарной струйки несжимаемой жидкости при установившемся движении. Если выделить в потоке два любых сечения, отстоящих на некотором расстоянии, то, просуммировав по каждому из живых сечений обе части в уравнении Таким образом, в отмеченных условиях расход, проходящий через все живые сечения потока, неизменен, несмотря на то что в каждом сечении средняя скорость и площадь живого сечения могут быть различны.
2. Кач-нное влиян темп на вязкость жидк и газа. В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры. Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры
39. Неустановившиеся движение жидкости. Что такое инерциальный напор и где он наблюдается?
40. Явление «Гидравлический удар». Уравнение Н.Е. Жуковского. Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода. Пусть в конце трубы, по которой движется жидкость со скоростью υ0, произведено мгновенное закрытие крана. При этом скорость частиц, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается в соответствии с увеличением давления на величину ΔPуд, которое называется ударным. Област в которой происходит увеличение давления, называется ударной волной. Ударная волна распространяется вправо со скоростью ударной волны. Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы - растянутыми. Ударное повышение давления распространится на всю длину трубы. Далее под действием перепада давления ΔPуд частицы жидкости устремятся из трубы в резервуар, причем это течение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-n перемещается обратно к крану с той же скоростью c, оставляя за собой выровненное давление P0 . Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующему давлению P0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0, но направленную теперь в противоположную теперь сторону. С этой скоростью весь объем жидкости стремится оторваться от крана, в результате возникает отрицательная ударная волна под давлением P0 - ΔPуд, которая направляется от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления. Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака. Очевидно, что как только отраженная от резервуара ударная волна под давлением ΔP уд достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится. Если давление P0 невелико (P0 < ΔP уд), то картина изменения амплитуды давления получается несколько иная. Повышение давления при гидравлическом ударе можно определить по формуле ΔPуд = ρυ0c Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле: где r - радиус трубопровода; E - модуль упругости материала трубы; δ - толщина стенки трубопровода;
|