КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Баланс энергии в лопастном насосе
На рис. 5.5 изображен баланс энергии в лопастном насосе. К насосу подводится мощность N. Часть этой мощности теряется (превращается в тепло). Потери мощности в насосе делят на механические, объемные и гидравлические. Рис. 5.5. Баланс энергии в лопастном насосе
Механические потери. Механическими являются потери на трение в подшипниках, в уплотнениях вала и на трение наружной поверхности рабочих колес о жидкость (дисковое трение). Мощность, остающаяся за вычетом механических потерь, передается рабочим колесом жидкости. Ее принято называть гидравлической.Энергия, переданная рабочим колесом единице веса проходящей через него жидкости, называется теоретическим напором Нт. Он больше напора Н насоса на величину гидравлических потерь hп при течении жидкости в рабочих органах насоса: Hт= Н + hп. (5.5) Через рабочее колесо протекает в секунду жидкость объемом Qк или весом QкρgHт. Следовательно, гидравлическая мощность насоса, т. е. мощность, сообщаемая жидкости в колесе, NГ=QкρgHт (5.6) Величина механических потерь оценивается механическим КПД, который равен отношению оставшейся после преодоления механических сопротивлений гидравлической мощности NГ к мощности N, потребляемой насосом ŋ мех = NГ/N. (5.7) Объемные потери. Рассмотрим объемные потери в одноступенчатом насосе. Жидкость, выходящая из рабочего колеса в количестве QК, в основном поступает в отвод (Q) и, следовательно, в напорный патрубок насоса, и частично возвращается в подвод через зазор в уплотнении 1 между рабочим колесом и корпусом насоса (утечка qк, рис. 5.6). Энергия жидкости, возвращающейся в подвод, теряется. Эти потери называются объемными. Утечки обусловлены тем, что давление на выходе из рабочего колеса больше, чем в подводе. Утечки тем значительнее, чем больше зазор в уплотнении 1 между рабочим колесом и корпусом насоса. Для того чтобы уменьшить утечки, следует уменьшить этот зазор до минимума, допускаемого технологией изготовления и деформацией вала и корпуса насоса при их нагрузке во время работы.
Рис. 5.6. Утечки в уплотнении рабочего колеса
Кроме рассмотренных утечек жидкости имеют место утечки через уплотнения вала. Они обычно малы и при рассмотрении баланса мощности ими можно пренебречь. Объемные потери оценивают объемным КПД, равным отношению мощности N' , оставшейся за вычетом мощности, затрачиваемой на объемные потери, к гидравлической мощности NГ (см. рис. 5.5): ŋ 0 = N'/NГ = (NГ – NО)/NГ, (5.8) где NО — мощность, затрачиваемая на объемные потери. Каждая единица веса жидкости, протекающей через уплотнение рабочего колеса, уносит энергию НT. Следовательно, мощность, затрачиваемая на объемные потери NO = qkgHт. Так как расход через колесо Qк = Q + qк (см. рис. 5.6), N' = NГ – NО = QкρqHТ - qkρgHт (5.9) Подставив выражения (5.9) и (5.6) в уравнение (5.8), получим ŋ O = Q/Qk = Q/(Q + qk) (5.10) В многоступенчатых насосах секционного типа (см.рис.5.4.) также имеются утечки жидкости через зазоры между валом и перегородками — диафрагмами, разделяющими ступени, и через гидравлическую пяту 3. Потери энергии, обусловленные утечками через уплотнения диафрагм, относятся к гидравлическим и механическим потерям, а через гидравлическую пяту — к объемным. Для многоступенчатых секционных насосов объемный КПД определяется также по уравнению (5.10), однако при этом под qk следует понимать не утечку через уплотнение рабочего колеса одной ступени, а сумму этой утечки и утечки qп в гидравлической пяте. Гидравлические потери. Третьим видом потерь энергии в насосе являются потери на преодоление гидравлического сопротивления подвода, рабочего колеса и отвода, или гидравлические потери. Они оцениваются гидравлическим КПД ŋ г, который равен отношению полезной мощности насоса Nп к мощности N' (см. рис. 5.5). Согласно уравнениям (5.2), (5.5). ŋг = NП/N' = H/Hт = H/(H+hп) (5.11) Как было указано в п. 5.2, КПД насоса ŋ = NП/ N Умножив и разделив правую часть уравнения на NГ N', получим ŋ = NП/N' ∙ N'/NГ ∙NГ/N = ŋ Г ŋ О ŋ мех,(5.12) т. е. КПД насоса равен произведению гидравлического, объемного и механического КПД.
|