![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гидродинамика
Как уже было сказано, общим дифференциальным уравнением гидродинамики является система уравнений Навье-Стокса (1.2 а). Для случая, когда сила внутреннего трения приравнивается к нулю, получается дифференциальное уравнение движения идеальной жидкости (дифференциальные уравнения движения Эйлера):
При интегрировании уравнения (1.7) получаем уравнение Бернулли для идеальной жидкости:
где z – нивелирная высота или геометрический напор. Это положение данной частицы жидкости относительно произвольно выбранной горизонтальной плоскости сравнения. Энергетический смысл: удельная потенциальная энергия положения;
H – полный напор или энергия жидкости, выраженная в метрах. Энергетический смысл уравнения Бернулли звучит так. «Для любого сечения или точки потока при установившемся движении идеальной жидкости сумма потенциальной ( Физический смысл уравнения Бернулли: в любом поперечном сечении потока идеальной жидкости полная удельная энергия жидкости постоянна и равна H. Реальная жидкость обладает вязкостью. Поэтому при её движении в закрытых каналах возникают касательные напряжения вследствие трения слоев жидкости между собой и о стенки канала. Кроме того, движение вязкой жидкости часто сопровождается вращением частиц, вихреобразованием и перемешиванием, особенно в местах, где происходит изменение живого сечения или направления движения потока. Все это требует затраты энергии, поэтому удельная энергия при движении вязкой жидкости не остается постоянной. С учетом неравномерного распределения скоростей по сечению потока и потерь энергии на преодоление сопротивления уравнение Бернулли для реальной (вязкой) жидкости приобретает вид:
где Данное уравнение используется для описания движения реальной жидкости и расчета гидравлических потерь, как от трения, так и от местных сопротивлений. Потери напора (энергии) на преодоление гидравлических сопротивлений или, как их часто называют, гидравлические потери зависят от формы, размеров русла, скорости течения и вязкости жидкости. При этом вязкость жидкости, хотя и является первопричиной всех гидравлических потерь, но далеко не всегда оказывает существенное влияние на их величину. Как показывают опыты, гидравлические потери, как правило, пропорциональны скорости течения жидкости во второй степени: где ξ – безразмерный коэффициент пропорциональности, называемый коэффициентом потерь или коэффициентом сопротивления. Физический смысл коэффициента потерь заключается в отношении потерянного напора к скоростному. Гидравлические потери обычно разделяют на местные потери и потери на трение по длине: ∑hn = hм + hтр. (1.11) Местные потери hм обусловлены так называемыми местными гидравлическими сопротивлениями, т.е. местными изменениями формы, размеров или направлениями русла, вызывающими деформацию потока. Потери на трение обусловлены вязкостным трением слоев жидкости между собой и о стенки канала. Они возникают в прямых трубах постоянного сечения, т.е. при равномерном течении, и возрастают пропорционально длине трубы. Таким образом, гидравлическое сопротивление однофазных потоков можно найти из уравнений:
или Величину гидравлических сопротивлений необходимо знать для определения движущей силы гидромеханических (гидравлических) процессов – разности давлений между двумя точками или сечениями аппарата. Кроме этого, величина hn необходима для определения оптимального диаметра трубопровода
|