Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Параметрические уравнения прямой в пространстве.




Параметрические уравнения прямой в пространстве имеют вид , где x1,y1 и z1 – координаты некоторой точки прямой, ax, ay и az (ax, ay и az одновременно не равны нулю) - соответствующие координаты направляющего вектора прямой, а - некоторый параметр, который может принимать любые действительные значения.

При любом значении параметра по параметрическим уравнениям прямой в пространстве мы можем вычислить тройку чисел , она будет соответствовать некоторой точке прямой (отсюда и название этого вида уравнений прямой). К примеру, при из параметрических уравнений прямой в пространстве получаем координаты x1, y1 и z1: .

В качестве примера рассмотрим прямую, которую задают параметрические уравнения вида . Эта прямая проходит через точку , а направляющий вектор этой прямой имеет координаты .

Рекомендуем продолжить изучение темы, обратившись к материалу статьи параметрические уравнения прямой в пространстве. В ней показан вывод параметрических уравнений прямой в пространстве, разобраны частные случаи параметрических уравнений прямой в пространстве, даны графические иллюстрации, приведены развернутые решения характерных задач и указана связь параметрических уравнений прямой с другими видами уравнений прямой.

К началу страницы


Поделиться:

Дата добавления: 2015-08-05; просмотров: 125; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты