Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Строение фоторецепторов




Основными светочувствительными элементами (рецепторами) являются два вида клеток: одни в виде стебелька - палочки 110-123 млн. (высота 30 мкм, толщина 2мкм), другие более короткие и более толстые -колбочки 6-7 млн. (высота 10мкм, толщина 6-7 мкм). Они распределены в сетчатке неравномерно. Центральная ямка сетчатки(fovea centralis) содержит только колбочки(до 140 тыс. на 1 мм). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает.

Каждый фоторецептор - палочка или колбочка состоит из чувствительного к действию света наружного сегмента содержащего зрительный пигмент и внутреннего сегмента, который содержит ядро и митохондрии обеспечивающие энергетические процессы в фоторецепторной клетке

Наружный сегмент светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал Электронно-микроскопические исследования выявили, что наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках, в каждом наружном сегменте, содержится 600-1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше. Это частично объясняет более высокую чувствительность палочки к свету ( палочку может возбудить всего один квант света, а для активации колбочки требуется больше сотни квантов).

Каждый диск представляет собой двойную мембрану, состоящую из двойного слоя молекул фосфолипидов, между которыми находятся молекулы белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрил. Внутренний сегмент переходит в отросток, с помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку

Наружные сегменты рецепторов обращены к пигментному эпителию, так что свет в начале проходит через 2 слоя нервных клеток и внутренние сегменты рецепторов, а потом достигает пигментного слоя.

Колбочки функционируют в условиях больших освещенностей - обеспечивают дневное и цветовое зрение, а палочки - отвечают за сумеречное зрение.

Видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны от 400нм) излучением, которое мы называем фиолетовым цветом и длинноволновым излучением (длина волны до 700 нм) называемым красным цветом.В палочках находится особый пигмент- родопсин, (состоит из альдегида витамина А или ретиналя и белка) или зрительный пурпур, максимум спектра, поглощения которого находится в области 500 нанометров. Он ресинтезируется в темноте и выцветает на свету. При недостатке витамина А нарушается сумеречное зрение -"куриная слепота".

В наружных сегментах трех типов колбочек (сине-, зелено- и красно-чувствительных) содержится три типа зрительных пигментов, максимум спектров поглощения которых находится в синей (420 нм), зеленой(531 нм) и красной(558 нм) частях спектра. Красный колбочковый пигмент получил название - "йодопсин". Структура йодопсина близка к родопсину.

 

Рассмотрим последовательность изменений:

Молекулярная физиология фоторецепции: Внутриклеточные регистрации от колбочек и палочек животных показали, что в темноте вдоль фоторецептора течет темновой ток, выходящий из внутреннегосегмента и входящий в наружный сегмент. Освещение приводит к блокаде этого тока. Рецепторный потенциал модулирует выделение медиатора (глутамата) в синапсе фоторецептора. Было показано, что в темноте фоторецептор непрерывно выделяет медиатор, который действует деполяризующимобразом на мембраны постсинаптических отростков горизонтальных и биполярных клеток. (см. Рис.1)

Палочки и колбочки обладают уникальной среди всех рецепторов электрической активностью, их рецепторные потенциалы при действии света - гиперполяризующие, потенциалы действия под их влиянием не возникают.

{ При поглощении света молекулой зрительного пигмента.(см. Рис.2) - родопсина в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь превращается в транс-ретиналь. Вслед за за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метородопсина II В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим примембранным белком гуанозин трифосфат(ГТФ) - связывающим белком – трансдуцином (Т).

В комплексе с метародопсином трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте ганозитдифосфат(ГДФ) на (ГТФ). Трансфдуцин +ГТФ, активируют молекулу другого примеммбранного белка - фермента фосфодиэстеразы(ФДЭ). Активированная ФДЭ разрушает несколько тысяч молекул цГМФ.

В результате падает концентрация цГМФ в цитоплазме наружного сегмента рецептора. Это приводит к закрытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темнотеи через которые внутрь клетки входили Na + и Ca . Ионные каналы закрываются вследствие того, что падает концентрация цГМФ, которая держала каналы открытыми. В настоящее время выяснено, что поры в рецепторе открываются благодаря цГМФ циклическому гуанозинмонофосфату.

Механизм восстановления исходного темного состояния фоторецептора связан с повышением концентрации цГМФ. (в темновую фазу с участием алкагольдегидрогеназы + НАДФ)

Т.о поглощение света, молекулами фотопигмента приводит к снижению проницаемости для Nа, что сопровождается гиперполяризацией, т.е. возникновением рецепторного потенциала. Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора - глутамата. Кроме глутамата нейроны сетчатки могут синтезировать и другие нейромедиаторы, такие как ацетилхолин, дофамин, глицин ГАМК.

 

Фоторецепторы связаны между собой - электрическими(щелевыми) контактами. Эта связь избирательная: палочки связаны с палочками и т.д.

Эти ответы от фоторецепторов сходятся на горизонтальные клетки, которые приводят к деполяризации в соседних колбочках возникает отрицательная обратная связь, которая повышает световой контраст.

На уровне рецепторов происходит торможение и сигнал колбочки перестает отражать число поглощенных фотонов, а несет информацию о цвете, распределении и интенсивности света, падающего на сетчатку в окрестностях рецептора.

 

Существует 3-и типа нейронов сетчатки - биполярные, горизонтальные и амакриновые клетки.Биполярные клетки непосредственно связывают фоторецепторы с ганглиозными клетками, т.е. осуществляют передачу информации через сетчатку в вертикальном направлении. Горизонтальные и амакриновые клетки передают информацию по горизонтали.

Биполярные клетки занимают в сетчатке стратегическую позицию, поскольку все сигналы, возникающие в рецепторах поступающие к ганглиозным клеткам, должны пройти через них.

Экспериментально было доказано, что биполярные клетки имеют рецептивные поля в которых выделяют центр и переферию (Джон Даулинг- и др. Гарвардская медицинская школа).

Рецептивное поле - совокупность рецепторов, посылающих данному нейрону сигналы через один или большее число синапсов.

Размер рецептивных полей: d=10 мкм или0,01 мм - вне центральной ямки.

В самой ямке d=2,5мкм(благодаря этому мы способны различать 2-е точки при видимом расстоянии между ними лишь 0,5 угловых минут-2,5мкм - если сравнить, то это монета в 5 копеек на расстоянии около 150 метров)

Начиная с уровня биполярных клеток нейроны зрительной системы дифференцируются на две группы, противоположным образом реагирующие на освещение и затемнение:

1 - клетки, возбуждающиеся при освещении и тормозящиеся при затемнении "on"- нейроны и

2 - клетки возбуждающиеся при затемнении и тормозящиеся при освещении - " off"- нейроны. Клетка с on-центром разряжается с заметно повышенной частотой.

Если слушать разряды такой клетки через громкоговоритель, то сначала вы услышите спонтанную импульсацию, отдельные случайные щелчки, а затем после включения света, возникает залп импульсов, напоминающий пулеметную очередь. Наоборот в клетках с off-реакцией (при выключении света - залп импульсов) Такое разделение сохраняется на всех уровнях зрительной системы, до коры включительно.

В пределах самой сетчатки передача информации осуществляется безимпульсным путем (распространением и транссинаптической передачей градуальных потенциалов).


Поделиться:

Дата добавления: 2015-08-05; просмотров: 89; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты