Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Доказательство




Лекция 7

ТЕМА: Однородная система линейных уравнений(СЛОУ)

 

Согласно определению 4.2 запишем однородную систему линейных уравнений.

(7.1).

 

Однородная система всегда совместна, так как всегда имеется тривиальное решение.

Согласно общей теории, если , то единственным является тривиальное решение.

Если же , то решений бесконечно много, и все они, кроме одного, нетривиальные.

 

Теорема 7.1(о нетривиальных решениях однородной системы)

Однородная линейная система с квадратной матрицей имеет нетривиальное решение тогда и только тогда, когда определитель системы равен нулю.

 

Доказательство

По теореме Крамера (5.1) тогда и только тогда, когда система с квадратной матрицей имеет единственное решение (т.е. векторы – столбцы системы (7.1) – линейно зависимы). В случае если задана система линейных однородных уравнений, это решение – тривиальное (0,0,…0). Значит, нетривиальные решения имеются тогда и только тогда, когда (т.е. решений системы бесконечное множество).

 

Любое решение СЛОУ выражается в виде линейной комбинации

векторов (если ):

 

, …, . (7.2)

Покажем, что вектора – линейно независимы. Для этого составим матрицу из их координат:

.

Ниже черты расположен минор порядка , отличный от нуля столбцов матрицы линейно независимы.

Следовательно, вектора – линейно независимы, т.е. эти вектора образуют базис подпространства.

 


Поделиться:

Дата добавления: 2015-08-05; просмотров: 127; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты