Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Среда передачи данных




 

Промышленностью выпускается огромное количество типов кабелей, например, только одна крупнейшая кабельная компания Belden предлагает более 2000 их наименований. Но все кабели можно разделить на три большие группы:

- электрические (медные) кабели на основе витых пар проводов (twistedpair), которые делятся на экранированные (shieldedtwistedpair, STP) и неэкранированные (unshieldedtwistedpair, UTP);

- электрические (медные) коаксиальные кабели (coaxialcable);

- оптоволоконные кабели (fibreoptic).

Каждый тип кабеля имеет свои преимущества и недостатки, так что при выборе надо учитывать как особенности решаемой задачи, так и особенности конкретной сети, в том числе и используемую топологию.

Можно выделить следующие основные параметры кабелей, принципиально важные для использования в локальных сетях:

- Полоса пропускания кабеля (частотный диапазон сигналов, пропускаемых кабелем) и затухание сигнала в кабеле. Два этих параметра тесно связаны между собой, так как с ростом частоты сигнала растет затухание сигнала. Надо выбирать кабель, который на заданной частоте сигнала имеет приемлемое затухание. Или же надо выбирать частоту сигнала, на которой затухание еще приемлемо. Затухание измеряется в децибелах и пропорционально длине кабеля.

- Помехозащищенность кабеля и обеспечиваемая им секретность передачи информации. Эти два взаимосвязанных параметра показывают, как кабель взаимодействует с окружающей средой, то есть, как он реагирует на внешние помехи, и насколько просто прослушать информацию, передаваемую по кабелю.

- Скорость распространения сигнала по кабелю или, обратный параметр – задержка сигнала на метр длины кабеля. Этот параметр имеет принципиальное значение при выборе длины сети. Типичные величины скорости распространения сигнала – от 0,6 до 0,8 от скорости распространения света в вакууме. Соответственно типичные величины задержек – от 4 до 5 нс/м.

- Для электрических кабелей очень важна величина волнового сопротивления кабеля. Волновое сопротивление важно учитывать при согласовании кабеля для предотвращения отражения сигнала от концов кабеля. Волновое сопротивление зависит от формы и взаиморасположения проводников, от технологии изготовления и материала диэлектрика кабеля. Типичные значения волнового сопротивления – от 50 до 150 Ом.

В настоящее время действуют следующие стандарты на кабели:

- EIA/TIA 568 (Commercial Building Telecommunications Cabling Standard) – американский;

- ISO/IEC IS 11801 (Generic cabling for customer premises) – международный;

- CENELEC EN 50173 (Generic cabling systems) – европейский.

Эти стандарты описывают практически одинаковые кабельные системы, но отличаются терминологией и нормами на параметры. В данном курсе предлагается придерживаться терминологии стандарта EIA/TIA 568.

Витые пары проводов используются в дешевых и сегодня, пожалуй, самых популярных кабелях. Кабель на основе витых пар представляет собой несколько пар скрученных попарно изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки. Скручивание проводов позволяет свести к минимуму индуктивные наводки кабелей друг на друга и снизить влияние переходных процессов.

Обычно в кабель входит две или четыре витые пары рисунок 1.4

 

 

Рисунок 1.4 - Кабель с витыми парами

 

Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, а также от подслушивания, которое может осуществляться с целью, например, промышленного шпионажа. Причем перехват передаваемой по сети информации возможен как с помощью контактного метода (например, посредством двух иголок, воткнутых в кабель), так и с помощью бесконтактного метода, сводящегося к радиоперехвату излучаемых кабелем электромагнитных полей. Причем действие помех и величина излучения во вне увеличивается с ростом длины кабеля. Для устранения этих недостатков применяется экранирование кабелей.

В случае экранированной витой пары STP каждая из витых пар помещается в металлическую оплетку-экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk – перекрестные наводки). Для того чтобы экран защищал от помех, он должен быть обязательно заземлен. Естественно, экранированная витая пара заметно дороже, чем неэкранированная. Ее использование требует специальных экранированных разъемов. Поэтому встречается она значительно реже, чем неэкранированная витая пара.

Основные достоинства неэкранированных витых пар – простота монтажа разъемов на концах кабеля, а также ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей. Например, при заданной скорости передачи затухание сигнала (уменьшение его уровня по мере прохождения по кабелю) у них больше, чем у коаксиальных кабелей. Если учесть еще низкую помехозащищенность, то понятно, почему линии связи на основе витых пар, как правило, довольно короткие (обычно в пределах 100 метров). В настоящее время витая пара используется для передачи информации на скоростях до 1000 Мбит/с, хотя технические проблемы, возникающие при таких скоростях, крайне сложны.

Согласно стандарту EIA/TIA 568, существуют пять основных и две дополнительные категории кабелей на основе неэкранированной витой пары (UTP):

- Кабель категории 1 – это обычный телефонный кабель (пары проводов не витые), по которому можно передавать только речь. Этот тип кабеля имеет большой разброс параметров (волнового сопротивления, полосы пропускания, перекрестных наводок).

- Кабель категории 2 – это кабель из витых пар для передачи данных в полосе частот до 1 МГц. Кабель не тестируется на уровень перекрестных наводок. В настоящее время он используется очень редко. Стандарт EIA/TIA 568 не различает кабели категорий 1 и 2.

- Кабель категории 3 – это кабель для передачи данных в полосе частот до 16 МГц, состоящий из витых пар с девятью витками проводов на метр длины. Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Это самый простой тип кабелей, рекомендованный стандартом для локальных сетей. Еще недавно он был самым распространенным, но сейчас повсеместно вытесняется кабелем категории 5.

- Кабель категории 4 – это кабель, передающий данные в полосе частот до 20 МГц. Используется редко, так как не слишком заметно отличается от категории 3. Стандартом рекомендуется вместо кабеля категории 3 переходить сразу на кабель категории 5. Кабель категории 4 тестируется на все параметры и имеет волновое сопротивление 100 Ом. Кабель был создан для работы в сетях по стандарту IEEE 802.5.

- Кабель категории 5 – в настоящее время самый совершенный кабель, рассчитанный на передачу данных в полосе частот до 100 МГц. Состоит из витых пар, имеющих не менее 27 витков на метр длины (8 витков на фут). Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Рекомендуется применять его в современных высокоскоростных сетях типа FastEthernet и TPFDDI. Кабель категории 5 примерно на 30—50% дороже, чем кабель категории 3.

- Кабель категории 6 – перспективный тип кабеля для передачи данных в полосе частот до 200 (или 250) МГц.

- Кабель категории 7 – перспективный тип кабеля для передачи данных в полосе частот до 600 МГц.

Стандарт определяет также максимально допустимую величину рабочей емкости каждой из витых пар кабелей категории 4 и 5. Она должна составлять не более 17 нФ на 305 метров (1000 футов) при частоте сигнала 1 кГц и температуре окружающей среды 20°С.

Для присоединения витых пар используются разъемы (коннекторы) типа RJ-45, похожие на разъемы, используемые в телефонах (RJ-11), но несколько большие по размеру. Разъемы RJ-45 имеют восемь контактов вместо четырех в случае RJ-11. Присоединяются разъемы к кабелю с помощью специальных обжимных инструментов. При этом золоченые игольчатые контакты разъема прокалывают изоляцию каждого провода, входят между его жилами и обеспечивают надежное и качественное соединение. Надо учитывать, что при установке разъемов стандартом допускается расплетение витой пары кабеля на длину не более одного сантиметра.

Кабели выпускаются с двумя типами внешних оболочек:

- Кабель в поливинилхлоридной (ПВХ, PVC) оболочке дешевле и предназначен для работы в сравнительно комфортных условиях эксплуатации.

- Кабель в тефлоновой оболочке дороже и предназначен для более жестких условий эксплуатации.

Кабель в ПВХ оболочке называется еще non-plenum, а в тефлоновой – plenum. Термин plenum обозначает в данном случае пространство под фальшполом и над подвесным потолком, где удобно размещать кабели сети. Для прокладки в этих скрытых от глаз пространствах как раз удобнее кабель в тефлоновой оболочке, который, в частности, горит гораздо хуже, чем ПВХ – кабель, и не выделяет при этом ядовитых газов в большом количестве.

Примером кабеля с экранированными витыми парами может служить кабель STP IBM типа 1, который включает в себя две экранированные витые пары AWG типа 22. Волновое сопротивление каждой пары составляет 150 Ом. Для этого кабеля применяются специальные разъемы, отличающиеся от разъемов для неэкранированной витой пары (например, DB9). Имеются и экранированные версии разъема RJ-45.

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального медного провода и металлической оплетки (экрана), разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку, рисунок 1.5.

 

Рисунок 1.5- Коаксиальный кабель

 

Коаксиальный кабель до недавнего времени был очень популярен, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), более широкими, чем в случае витой пары, полосами пропускания (свыше 1ГГц), а также большими допустимыми расстояниями передачи (до километра). К нему труднее механически подключиться для несанкционированного прослушивания сети, он дает также заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5 – 3 раза). Сложнее и установка разъемов на концах кабеля. Сейчас его применяют реже, чем витую пару. Стандарт EIA/TIA-568 включает в себя только один тип коаксиального кабеля, применяемый в сети Ethernet.

Основное применение коаксиальный кабель находит в сетях с топологией типа шина. При этом на концах кабеля обязательно должны устанавливаться терминаторы для предотвращения внутренних отражений сигнала, причем один (и только один!) из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, необходимо, чтобы их сопротивление равнялось волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.

Реже коаксиальные кабели применяются в сетях с топологией звезда (например, пассивная звезда в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.

Волновое сопротивление кабеля указывается в сопроводительной документации. Чаще всего в локальных сетях применяются 50-омные (RG-58, RG-11, RG-8) и 93-омные кабели (RG-62). Распространенные в телевизионной технике 75-омные кабели в локальных сетях не используются. Марок коаксиального кабеля немного. Он не считается особо перспективным. Не случайно в сети FastEthernet не предусмотрено применение коаксиальных кабелей. Однако во многих случаях классическая шинная топология (а не пассивная звезда) очень удобна. Как уже отмечалось, она не требует применения дополнительных устройств – концентраторов.

Существует два основных типа коаксиального кабеля:

- тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;

- толстый (thick) кабель, диаметром около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен современным тонким кабелем.

Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, поскольку сигнал в нем затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения. Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования. А для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабель примерно вдвое дороже, чем тонкий, поэтому тонкий кабель применяется гораздо чаще.

Как и в случае витых пар, важным параметром коаксиального кабеля является тип его внешней оболочки. Точно так же в данном случае применяются как non-plenum (PVC), так и plenum кабели. Естественно, тефлоновый кабель дороже поливинилхлоридного. Обычно тип оболочки можно отличить по окраске (например, для PVC кабеля фирма Belden использует желтый цвет, а для тефлонового – оранжевый).

Типичные величины задержки распространения сигнала в коаксиальном кабеле составляют для тонкого кабеля около 5 нс/м, а для толстого – около 4,5 нс/м.

Существуют варианты коаксиального кабеля с двойным экраном (один экран расположен внутри другого и отделен от него дополнительным слоем изоляции). Такие кабели имеют лучшую помехозащищенность и защиту от прослушивания, но они немного дороже обычных.

Оптоволоконный (он же волоконно-оптический) кабель – это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент – это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением, рисунок 1.6.

 

 

Рисунок 1.6 - Структура оптоволоконного кабеля

 

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля. Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 – 10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды.

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов.

Однако оптоволоконный кабель имеет и некоторые недостатки.

Самый главный из них – высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием. Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом. Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их.


Поделиться:

Дата добавления: 2015-08-05; просмотров: 208; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты