Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Динамики общего коэффициента смертности




Читайте также:
  1. Анализ динамики и состава оборотных активов приведен в таблице 7.
  2. Анализ динамики производительности труда
  3. Анализ структуры и динамики имущества и источников средств
  4. Вероятностные таблицы смертности (чаще
  5. Возрастные коэффициенты смертности
  6. ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ
  7. Глава 11. Возникновение новой императивной нормы общего международного права
  8. Глава 16 Институт стерв, как часть общего
  9. Глава 3. Последствия недействительности договора, противоречащего императивной норме общего международного права
  10. Группа1 Устройство бетонной подготовки и фундаментов общего назначения

Возрастные коэффициенты смертности, как уже отмечалось, дают наилучшие возможности для анализа уровня смертности. Но у них есть недо­статок, такой же как у всех других возрастных коэффициентов: их много, с ними трудно работать. Нужен один, обобщающий показатель. Но такого показателя смертности, аналогичного суммарному коэффициенту рождае­мости, нет (в определенной степени эту роль выполняет показатель сред­ней ожидаемой продолжительности жизни, но для его получения нужно строить довольно трудоемкие таблицы смертности).

В известной степени можно компенсировать трудности анализа возрастных коэффициентов смертности, повышая аналитические возможности общего коэффициента смертности с помощью индексного метода и мето­дов стандартизации коэффициентов. Для применения этих методов обра­тимся к общему коэффициенту смертности и представим его в такой фор­ме, чтобы можно было видеть его внутреннюю структуру.

(6.5)

Первая дробь в правой части формулы есть уже известное отношение годового общего числа умерших М к среднегодовой численности населе­ния. Числитель этой дроби — М — можно представить как сумму произве­дений возрастных коэффициентов смертности тx на численности населе­ния каждой соответствующей возрастной группы Рх, т.е. . В знаменателе этой дроби общую численность населения Р можно представить как сумму численностей населения всех возрастных групп, т.е. åPx. Для расчета удобнее численность населения каждой возрастной группы использовать не в абсолютном, а в относительном выражении, в долях единицы или в процентах (приняв соответственно общую численность населе­ния за 1 или за 100. В долях единицы рассчитывать удобнее всего, тогда знаменатель третьей дроби, равный единице, можно опустить).

Сравнение двух общих коэффициентов смертности теперь можно пред­ставить таким образом:

(6.7)

Индексный метод в данном случае можно применить, если известны все структурные элементы сравниваемых совокупностей, т.е. возрастные коэф­фициенты смертности тx,и возрастные структуры сравниваемых населений (удельный вес возрастных групп в общей численности населения wx). Правые верхние индексы 0 и 1 обозначают сравниваемые совокупности населения (либо на начало и конец изучаемого периода времени, если анализируется ди­намика уровня смертности, либо между собой, если анализируются различия смертности двух групп населения в статике). Итак, рассмотрим случай, когда все структурные элементы коэффициента смертности нам известны и возможно использовать индексный метод. Построим систему индексов. Для это­го в правой части равенства введем в числитель и знаменатель одно и то же число (т.е. величину общего коэффициента смертности при предпо­ложении о неизменности, одинаковости возрастной структуры сравнивае­мых населений), затем произведем несложную перестановку:



 

(6.7)

В правой части нашего уравнения оказались два индекса-дроби. Первая из них характеризует изменение (или отличие) общего коэффициента смертности за счет различий именно смертности (повозрастной интенсив­ности смертности) при неизменной возрастной структуре (доли каждой возрастной группы в составе общей численности населения одинаковы в числителе и знаменателе). Второй индекс характеризует изменение (либо отличие) общего коэффициента смертности за счет изменения (или отли­чия) возрастной структуры населения. Отметим также, что сумма произве­дений возрастных коэффициентов смертности на доли соответствующих возрастных групп в численности населения ( ) есть не что иное, как общий коэффициент смертности, и произведем соответствующие замены в знаменателе первой дроби и в числителе второй. Теперь система индексов получает законченный вид.



Для примера проанализируем динамику уровня смертности населения России за время между серединами 1990 и 1995 гг. (таблица 6.2). Все исходные данные заимствованы из Демографического ежегодника России.

Подставив в формулу числовые значения, получим:

В результате окончательно получаем:

,

где Jm — индекс динамики общего коэффициента смертности; Jmx — ин­декс изменения общего коэффициента смертности за счет интенсивности смертности; Jwx —индекс изменения общего коэффициента смертности за счет изменения возрастной структуры населения.

Общий вывод в итоге следующий. За период 1990—1995 гг. общий коэффициент смертности населения в России повысился на 33,9%, в том чис­ле на 26,5% — за счет действительного роста смертности и на 5,9% — за счет изменения (постарения) возрастной структуры населения. Таким образом, если нас интересует динамика уровня смертности, а не показателя (и чаще всего это именно так), то уровень смертности в России за рассматри­ваемый период времени повысился на 28%, а не на 34, как об этом можно судить по величине общего коэффициента смертности. Разница сущест­венная, и ею, вероятно, не стоит пренебрегать.


Дата добавления: 2015-09-15; просмотров: 5; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.031 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты