Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Фазовое пространство и фазовые траектории




 

Состояние системы в любой момент времени зависит от ее начальных параметров и множества внутренних и внешних факторов. Например, для нахождения возможных вариантов колебания физического маятника нужно знать всего два параметра - координату и скорость. Их значение в момент времени t будет определяться свойствами самого маятника (длина его подвеса, масса, момент инерции) и внешними условиями, в которых происходят колебания (вынуждающая сила, трение, ускорение свободного падения). В более сложных системах таких параметров будет значительно больше. Среди всей их совокупности выделяют наиважнейшие - управляющие (главные), характер изменения которых оказывает определяющее влияние на поведение системы (например, ежегодная численность популяции живых организмов, проживающих на определенной территории, обусловлена, главным образом, двумя параметрами: коэффициентом размножения и состоянием природных ресурсов территории, необходимых для питания).

В случае незатухающих колебаний маятника множество возможных его траекторий можно аппроксимировать (лат. approximo - приближаюсь, замена одних математических функций более простыми, но близкими к исходной) с помощью уравнения эллипса с переменными значениями координат Х и Y. В случае затухающих колебаний координаты будут изменяться, и будем иметь семейство эллипсов. В конце концов, когда маятник остановится, эллипс выродится в точку. Плоскость, в которой они располагаются, называют фазовым пространством (рис.6), а сами эллипсы - фазовыми траекториями. Каждая точка фазовой траектории соответствует состоянию системы в данный момент времени. В случае затухающих колебаний фазовая траектория будет представлять собой спираль, сходящуюся в точку, которая соответствует покою маятника. Эту точку называют аттрактор (лат. attraho - притягиваю к себе). С одной стороны, аттрактор - это некая геометрическая структура, отражающая поведение системы в фазовом пространстве в течение длительного времени. С другой стороны - это как бы «цель», к которой «стремится» система, ее «конечное состояние» (или некоторый этап эволюции).

 

 

 
 


Х1 фазовое пространство

Х3

 

В

 

А фазовая траектория

 

 

Х2

Рис. 6. Фазовое пространство

 

Как известно, все свободные колебания являются затухающими. Но, если колеблющуюся систему регулярно подпитывать энергией (вынуждать ее колебаться), можно добиться постоянства значений параметров колебаний (частоты, амплитуды), то есть вывести их на фазовую траекторию, которая отвечает установившемуся режиму.

В общем случае фазовое пространство есть некое воображаемое абстрактное пространство. Чем больше переменных требуется для описания состояния системы, тем больше его «мерность». Так для описания социальной системы необходимо знать выраженные в единой количественной (например, десятибалльной) шкале показатели состояния экономики и технологий, уровень здоровья и образования населения, рождаемость и смертность, наличие природных ресурсов и их качество, уровень общей и экологической культуры, состояние дорог, транспорта, сферы обслуживания и т.д. Фазовое пространство такой системы многомерно, его метрика определяется числом выделенных параметров.

В результате обмена ресурсами с другими системами, а также случайных флуктуаций с течением времени параметры системы изменяются, происходит последовательная смена состояний. Точка, соответствующая определенному состоянию системы, перемещается внутри фазового пространства вдоль фазовой траектории, вид которой зависит от интенсивности процессов обмена системы с окружающей средой, свойств системы и характера изменения ее внутреннего состояния.

Чтобы представить фазовую траекторию в аналитическом виде, необходимо знать взаимосвязь между параметрами системы. В случае открытых систем, далеких от равновесия, независимо от их природы, эта взаимосвязь может быть выражена через совокупность нелинейных (т.е. содержащих переменные в степени, большей единицы) дифференциальных (связывающих искомую функцию, ее производные и независимые переменные) уравнений.

 


Поделиться:

Дата добавления: 2015-09-13; просмотров: 200; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты