![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Понятие функции. Способы задания функцииФункцией называется закон, по которому числу х из заданного множества Х, поставлено в соответствие только одно число у, пишут Существуют разные способы задания функций. 1. Аналитический способ. Аналитический способ - это наиболее часто встречающийся способ задания функции. Заключается он в том, что функция задается формулой, устанавливающей, какие операции нужно произвести над х, чтобы найти у. Например Рассмотрим первый пример - Функция может быть задана на разных частях множества X разными функциями. Например: Во всех ранее приведенных примерах аналитического способа задания, функция была задана явно. То есть, справа стояла переменная y, а справа формула от переменной х. Однако, при аналитическом способе задания, функция может быть задана и неявно. Например
При аналитическом способе задания, функция может быть задана параметрически - это, когда х и у выражены через некоторый параметр t. Например, Здесь при t = 2, x = 2, y = 4. То есть, значение функции при х = 2 равно 4.
2. Графический способ. При графическом способе вводится прямоугольная система координат и в этой системе координат изображается множество точек с координатами (x,y). При этом 3. Словесный способ. Функция задается с помощью словесной формулировки. Классический пример – функция Дирихле. «Функция равна 1, если х – рациональное число; функция равна 0, если х – иррациональное число».
4. Табличный способ. Табличный способ наиболее удобен, когда множество Х конечно. При этом способе составляется таблица, в которой каждому элементу из множества Х, ставится в соответствие число Y. Пример: Табличный способ задания функции очень удобен при обработке результатов исследований. Например, при выявлении зависимости между уровнем загрязнения окружающей среды и количеству людей, заболевших раком. 4Логари́фм числа Из определения следует, что вычисление Вычисление логарифма называется логарифмированием. Числа 5Показательная функция — математическая функция
Особо выделяется случай, когда в качестве основания степени выступает число e. Такая функция называется экспонентой (вещественной или комплексной).
6Степенна́я фу́нкция — функция 7Логари́фм числа Из определения следует, что вычисление Вычисление логарифма называется логарифмированием. Числа
|