Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Доказательство. Поставим выражение в (2.3) и покажем, что в результате получается тождество:




Поставим выражение в (2.3) и покажем, что в результате получается тождество:

.

Перегруппируем слагаемые:

.

Поскольку функции и являются решениями уравнения (2.3), то каждая из скобок в последнем уравнении тождественно равна нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при , что если – решение уравнения (2.3), то тоже есть решение этого уравнения.

Следствие 2. Полагая , видим, что сумма двух решений лоду также является решением этого уравнения.

Замечание. Доказанное в теореме свойство решений остается справедливым для лоду любого порядка.

 

 

§3. Определитель Вронского.

Определение. Система функций называется линейно независимой на некотором промежутке, если ни одна из этих функций не представляется в виде линейной комбинации всех остальных.

В случае двух функций это означает, что , т.е. . Последнее условие можно переписать в виде или . Стоящий в числителе этого выражения определитель называется определителем Вронского для функций и . Таким образом, определитель Вронского для двух линейно независимых функций не может быть тождественно равен нулю.

Пусть – определитель Вронского для линейно независимых решений и уравнения (2.3). Убедимся подстановкой, что функция удовлетворяет уравнению . (3.1)

Действительно, . Поскольку функции и удовлетворяют уравнению (2.3), то , т.е. – решение уравнения (3.1). Найдем это решение: ; . Откуда , . , , .

В правой части этой формулы надо взять знак плюс, так как только в этом случае при получается тождество. Таким образом,

(3.2)

Это формула называется формулой Лиувилля. Выше было показано, что определитель Вронского для линейно независимых функций не может быть тождественно равен нулю. Следовательно, существует такая точка , в которой определитель для линейно независимых решений уравнения (2.3) отличен от нуля. Тогда из формулы Лиувилля следует, что функция будет отлична от нуля при всех значениях из рассматриваемого промежутка, поскольку при любом значении оба множителя в правой части формулы (3.2) отличны от нуля.

 

§4. Структура общего решения лоду 2-го порядка.

Теорема. Если и – линейно независимые решения уравнения (2.3), то их линейная комбинация , где и – произвольные постоянные, будет общим решением этого уравнения.


Поделиться:

Дата добавления: 2015-09-14; просмотров: 108; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты