Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Доказательство. То, что есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка




То, что есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка. Надо только еще показать, что решение будет общим, т.е. надо показать, что при любых начальных условиях , можно выбрать произвольные постоянные и так, чтобы удовлетворить этим условиям. Запишем начальные условия в виде:

Постоянные и из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы есть значение определителя Вронского для линейно независимых решений лоду при :

,

а такой определитель, как мы видели в предыдущем параграфе, отличен от нуля. Теорема доказана.

Пример. Доказать, что функция , где и – произвольные постоянные, является общим решением лоду .

Решение.

Легко убедиться подстановкой, что функции и удовлетворяют данному уравнению. Эти функции являются линейно независимыми, так как . Поэтому согласно теореме о структуре общего решения лоду 2-го порядка является общим решением данного уравнения.

 

§5. ЛОДУ 2-го порядка с постоянными коэффициентами.

Дано лоду 2-го порядка с постоянными коэффициентами (5.1), где , . Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер. Это метод, который называется методом Эйлера, состоит в том, что частные решения ищутся в виде .

Подставляя эту функцию в уравнение (5.1), после сокращения на , получим алгебраическое уравнение, которое называется характеристическим:

(5.2)

Функция будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2). В зависимости от величины дискриминанта возможны три случая.

1. . Тогда корни характеристического уравнения различны: . Решения и будут линейно независимыми, т.к. и общее решение (5.1) можно записать в виде .

2. . В этом случае и . В качестве второго линейно независимого решения можно взять функцию . Проверим, что эта функция удовлетворяет уравнению (5.1). Действительно, , . Подставляя эти выражения в уравнение (5.1), получим

или , т.к. и .

Частные решения и линейно независимы, т.к. . Следовательно, общее решение (5.1) имеет вид:

или .

3. . В этом случае корни характеристического уравнения комплексно-сопряженные: , где , . Можно проверить, что линейно независимыми решениями уравнения (5.1) будут функции и . Убедимся, что уравнению (5.1) удовлетворяет, например, функция y1. Действительно, , . Подставив эти выражения в уравнение (5.1), получим

.

Обе скобки в левой части этого равенства тождественно равны нулю. Действительно, ,

. Таким образом, функция удовлетворяет уравнению (5.1). Аналогично нетрудно убедиться в том, что и есть решение уравнения (5.1). Поскольку , то общее решение будет иметь вид:

.

 

§6. Структура общего решения линейного неоднородного дифференциального уравнения (лнду) 2-го порядка.

Теорема 1. Общее решение лнду 2-го порядка

f(x) (6.1)

представляется в виде суммы общего решения соответствующего однородного уравнения

(6.2)

и любого частного решения лнду (6.1).


Поделиться:

Дата добавления: 2015-09-14; просмотров: 113; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты