КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Фокусы и эксцентриситет. ⇐ ПредыдущаяСтр 3 из 3 У гиперболы, точно так же, есть две особенные точки , которые называются фокусами. Общая концепция определения тоже похожа: Гиперболой называют множество всех точек плоскости, абсолютное значение разности расстояний до каждой из которых от двух данных точек – есть величина постоянная, численно равная расстоянию между вершинами этой гиперболы: . При этом расстояние между фокусами превосходит длину действительной оси: . Если гипербола задана каноническим уравнением , то расстояние от центра симметрии до каждого из фокусов рассчитывается по формуле: . Для исследуемой гиперболы : Разбираемся в определении. Обозначим через расстояния от фокусов до произвольной точки гиперболы:
Сначала мысленно передвигайте синюю точку по правой ветви гиперболы – где бы мы ни находились, модуль (абсолютное значение) разности между длинами отрезков будет одним и тем же: Если точку «перекинуть» на левую ветвь, и перемещать её там, то данное значение останется неизменным. Знак модуля нужен по той причине, что разность длин может быть как положительной, так и отрицательной. Кстати, для любой точки правой ветви (поскольку отрезок короче отрезка ). Для любой точки левой ветви ситуация ровно противоположная и . Более того, ввиду очевидного свойства модуля безразлично, что из чего вычитать. Удостоверимся, что в нашем примере модуль данной разности действительно равен расстоянию между вершинами. Мысленно поместите точку в правую вершину гиперболы . Тогда: , что и требовалось проверить. Эксцентриситетом гиперболы называют отношение . Так как расстояние от центра до фокуса больше расстояния от центра до вершины: , то эксцентриситет гиперболы всегда больше «единицы»: . Для данного примера: .
При увеличении эксцентриситета ветви гиперболы «распрямляются» к оси . Если же значение эксцентриситета приближается к единице, то ветви гиперболы «сплющиваются» к оси .
|