КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Производство органических кислотОрганические кислоты широко используют в пищевой и фармацевтической промышленности, в технике и в качестве химического сырья. С помощью микроорганизмов можно получить до 60 органических кислот. Многие из них получаются в промышленном масштабе - молочная, уксусная, лимонная, яблочная, янтарная. Эти пищевые кислоты используются как регуляторы кислотности и консерванты. Лимонную кислоту получают с помощью Yarrowia lipolytica, Aspergillus niger, молочную – Endomycopsis fibuligera, Rhisopus oryzae, Lactobacillus casei, янтарную – Anaerobiospirillum succiniproducens. Уксусную кислоту получают путем микробиологической конверсии водорода и углекислого газа бактериями Acetobacterium woodi и Clostridium aceticum. Отдельные органические кислоты (лимонную, яблочную) можно получать экстракцией из природного растительного сырья; другие (уксусную, молочную) – в процессах органического синтеза. Более 50 органических кислот могут быть получены на основе микробиологического синтеза. Биотехнологические методы их получения к настоящему времени детально разработаны. Более того, принято считать, что органические кислоты, полученные в результате микробиологического синтеза, для использования человеком предпочтительнее в сравнение с синтетическими кислотами. Для технических нужд органические кислоты получают химическим путем; применяемые в пищевой и фармацевтической промышленности – в различных биотехнологических процессах. Это производства лимонной, молочной, уксусной, итаконовой, пропионовой и глюконовой органических кислот; (молочная и уксусные кислоты производятся также и химическим путем).Органические кислоты в системе микробного метаболизма являются продуктами деградации источника энергии и углерода. Так, лимонная, изолимонная, кетоглутаровая, янтарная, фумаровая и яблочная кислоты – интермедиаты цикла трикарбоновых кислот у большинства аэробных микроорганизмов. Глюконовая, кетоглюконовая и винная кислоты – промежуточные продукты прямого окисления глюкозы (без фосфорилирования) некоторых аэробных бактерий и грибов. Молочная, масляная и пропионовая кислоты являются конечными продуктами метаболизма углеводов у анаэробных бактерий. Уксусная кислота – продукт окисления этанола; а алифатические моно- и дикарбоновые кислоты – промежуточные продукты окисления нормальных алканов. Таким образом, возможности микроорганизмов для получения на основе их метаболизма органических кислот велики.Для сверхсинтеза отдельных кислот нужны селективные, строго определенные условия. При сбалансированном росте микроорганизмов на полноценной среде накопления органических кислот не происходит, так как являясь промежуточными продуктами в системе микробного метаболизма, органические кислоты – исходный материал для синтеза других макромолекул. Время максимальной скорости образования в клетке органических кислот, как и многих других метаболитов, не совпадает во времени со скоростью размножения клеток и накоплением биомассы. Сверхсинтез органических кислот наблюдается при торможении скорости роста продуцента и блокировании процессов биосинтеза, требующих участия кислот в качестве субстрата, то есть при нарушении процессов диссимиляции имеющегося эндогенного субстрата и процессов синтеза основных (азотсодержащих) компонентов клетки. Такими условиями, как правило, является полное или избыточное содержание в среде источника углерода и энергии и дефицит биогенных элементов, ограничивающих рост клеток. Большинство органических кислот получают, лимитируя рост клеток-продуцентов дефицитом азота или фосфора при избытке углеродсодержащего субстрата. Поэтому микробиологические процессы получения органических кислот – двухфазные: на первом этапе происходит так называемый сбалансированный рост при максимальном накоплении биомассы и потреблении углеродного и энергетического субстрата, а также лимитирующего биогена; на втором – происходит замедление скорости роста клеток. В результате этого прирост биомассы прекращается и начинается интенсивное кислотообразование. Длительность фазы интенсивного кислотообразования определяется наличием углеродсодержащего субстрата в среде. Важным условием кислотообразование большинства органических кислот (за исключением молочной) является хороший режим аэрации, а также величина рН среды.Способность продуцировать ту или иную кислоту – широко распространенное среди микроорганизмов свойство. В качестве производственных культур используют специально подобранные штаммы, продуцирующие целевую кислоту в виде монопродукта с высокими выходами и эффективным усвоением углеродного субстрата. При многих производствах органических кислот экономический коэффициент по углероду достигает 90 % и выше. В качестве продуцентов используют бактериальные, дрожжевые и грибные культуры (Lactobacillus, Arthrobacter, Alcaligenes,Candida, Aspergillus, Penicillium, Trichoderma). Способы ферментации в микробиологических процессах производства органических кислот – разнообразны. Среди них – поверхностные жидко- и твердофазные процессы, а также глубинные, включая проточные культуры. В последние годы разработаны принципиально новые и эффективные биотехнологии с использованием иммобилизованных целых клеток и ферментов. Также разнообразны и субстраты, используемые в производстве органических кислот. Применяемые в начале века глюкоза и сахароза со временем стали заменять более доступными комплексными средами (мелассой, гидролизным крахмалом); в 60-е годы были разработаны новые процессы получения органических кислот на жидких парафинах нефти. Получение лимонной кислотыЛимонная кислота (СН2 – СООН – СОНСООН – СН2СООН) – трехосновная оксикислота, широко распространенная в плодах и ягодах. Она широко применяется в пищевой промышленности при производстве кондитерских изделий и напитков, в фармацевтической, химической и текстильной промышленности. Лимонная кислота была идентифицирована в качестве продукта метаболизма плесневых грибов в 1893 г. Вемером. В настоящее время это кислота по объемам производства (свыше 350 тыс. т/г) занимает первое место среди всех органических кислот.У микроорганизмов синтез лимонной кислоты реализуется в цикле дикарбоновых кислот и осуществляется в результате конденсации кислоты с четырьмя атомами углерода и двумя карбоксильными группами и кислоты с одной карбоксильной группой. Образуемая в результате гликолиза пировиноградная кислота связывается с углекислотой; синтезируемая при этом щавелевоуксусная кислота реагирует с уксусной кислотой с образованием лимонной кислоты, то есть образование лимонной кислоты включает реакции гликолиза и ряд реакций цикла Кребса. При каждом обороте цикла молекула щавелевоуксусной кислоты взаимодействует с уксусной, образуя лимонную кислоту. Получение уксусной кислотыУксусная кислота (СН3СООН) – широко используется в пищевой, химической, микробиологической промышленности, в медицине. Получение уксусной кислоты из спиртосодержащих жидкостей было известно более 10 тыс. лет назад. В те времена древние греки и римляне использовали уксус в качестве освежающего напитка и получали, главным образом, оставляя вино открытым. В больших масштабах уксус долго получали в плоских открытых бочках, в которых пленка бактерий плавала на поверхности. В XIX веке поверхностные процессы стали заменять более эффективными. Так, был разработан процесс в струйном генераторе. В середине ХХ века появились глубинные процессы ферментации. Усовершенствованный генератор Фрингса используется в настоящее время.Уксуснокислое брожение основано на способности уксуснокислых бактерий окислять спирт кислородом воздуха с участием алкогольдегидрогеназы в уксусную кислоту: СН3СН2ОН + О2 → СН3СООН + Н2О,при этом из 1 моля этанола образуется моль уксусной кислоты, а из 1 л 12 об. % спирта получается 12.4 весовых % уксусной кислоты.Данный процесс могут реализовать многие бактерии, но в промышленных технологиях для получения уксуса используют уксуснокислые бактерии рода Acetobacter, интерес представляют также бактерии Gluconobacter. Большую часть уксуса получают, используя разведенный спирт. В настоящее время процесс реализуют как поверхностным, так и глубинным способом. Поверхностный режим протекает в струйных генераторах, наполненных древесной стружкой, объемом до 60 м3. Исходный питательный раствор с бактериями распыляют по поверхности стружек, и он стекает, собираясь в нижней части аппарата. После этого жидкость собирают и вновь закачивают в верхнюю часть аппарата. Процедуру повторяют 3–4 раза, в результате в течение 3-х дней до 90 % спирта трансформируется в ацетат. Этот старый способ протекает более эффективно и равномерно в генераторах Фрингса с автоматическим поддержанием температуры и принудительной подачей воздуха. По такой технологии производят до 400 млн л уксусной кислоты в год.Современные промышленные процессы получения уксуса реализуют в глубинной культуре в специальных аэрационных аппаратах с термостабилизацией и механической системой пеногашения. Скорость аэрации составляет 3.4 м3/м3 ч., вращение ротора – 1500 об./мин., температура 30°С.Исходная инокулируемая смесь содержит этанол и уксусную кислоту, соответственно, около 5 и 7 %; конечная концентрация уксуса через 1.5 суток составляет 12–13 %. Процесс – полупроточный, отливно-доливный.Каждые 30–35 часов до 60 % культуры заменяют на свежее сусло. При глубинной ферментации выход продукта на 1 м3 в 10 раз выше по сравнению с поверхностной ферментацией. К началу 90-х гг. таким способом производили до 715 млн. литров 10 % уксусной кислоты в год.Разработан и реализован эффективный непрерывный способ получения уксусной кислоты в батарее последовательно работающих ферментеров (обычно 5 аппаратов). Температура культивирования составляет 28° для Acetobacter и 35° при использовании в качестве продуцента культуры Bact. schutzenbachii. Наилучшим сырьем для процесса является этиловый спирт, полученный из зерно-картофельного сырья, при его концентрации около 10 %. Оптимум рН для развития бактерий – около 3. При увеличении содержания уксусной кислоты в культуре свыше 8 % рост бактерии замедляется, при 12–14 % прекращается. Поэтому процесс проводят в батарее последовательно соединенных аппаратов. Первый выполняет роль инокулятора, поэтому в него непрерывно подают свежую среду и поддерживают условия, оптимальные для быстрого образования биомассы бактерий. Культура из первого аппарата поступает во второй аппарат и далее – в последующие, при этом транспортировка культуральной жидкости осуществляется воздухом. В каждом аппарате условия ферментации стабилизируются в соответствии с требованиями течения хода ферментации, при постепенном понижении температура среды от 28° в первом аппарате до 25° – в последнем. Режим аэрации также изменяется, от 0.4 до 0.15 м3/м3 мин. Концентрация спирта со второго по четвертый аппарат стабилизируется на требуемом уровне подачей в них среды с 40 % этанолом. Из последнего аппарата выводится культуральная жидкость с содержанием ацетата не ниже 9.0 и не выше 9.3 %. Выход кислоты составляет до 90 кг из 100 л безводного спирта.На постферментационной стадии после отделения бактериальной биомассы раствор уксуса фильтруют, освобождая от окрашенных и взвешенных частиц, и далее подвергают пастеризации. Для повышения концентрации исходные растворы вымораживают до 20–30 %. Дальнейшее концентрирование до получения ледяной уксусной кислоты (98.0–99.8 %), проводят методом перегонки.
|