Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Производство полисахаридов




Микроорганизмы являются важным источником получения полимерных материалов на основе полисахаридов. Полисахариды (гликаны) – полимеры, построенные не менее чем из 11 моносахаридных единиц. Полисахариды являются обязательным компонентом всех организмов, присутствуют как изолированно, так и в комплексах с белками, липидами, нуклеиновыми кислотами. Полисахариды преобладают в растительных биомассах и составляют, следовательно, большую часть органического материала на планете. Полисахариды разнообразны по строению, локализации в клетках и, естественно, по своим физико-химическим свойствам. Особенно разнообразны полисахариды, синтезируемые микроорганизмами. Микробные полисахариды делятся на внутриклеточные, локализованные в цитоплазме, и внеклеточные – полисахариды слизей, капсул, чехлов. Многие полисахариды биологически активны и повышают устойчивость макроорганизмов к вирусной и бактериальной инфекциям, обладают противоопухолевым действием, а также антигенной специфичностью. Поэтому они находят все более широкое применение в медицине и фармацевтической промышленности в качестве диагностикумов, заменителей плазмы крови и пр. Чрезвычайно широки перспективы применения полисахаридов в связи с их гелеообразующими и реологическими свойствами в качестве загустителей сиропов и косметических средств, для упаковки продуктов и протравливания семян. Водные растворы отдельных полисахаридов чрезвычайно стабильны в широких интервалах рН и температуры, поэтому находят применения при добыче нефти и газа; флоккулирующие свойства гликанов используют в процессах очистки, концентрирования и разделения металлов. Возможности полисахаридов раскрыты далеко не полностью, поэтому их изучение ведет к расширению сферы применения.Большинство микроорганизмов синтезируют полисахариды из разнообразных источников углерода, обеспечивающих их рост, – углеводов, спиртов, карбоновых кислот, С1-соединений. Природа и концентрация углеродного источника в среде существенно влияет на образование полисахаридов, которое сводится к созданию гликозидной связи между моносахаридными единицами; при этом гликозильный донор передает гликозил на акцептор-затравку, высвобождаясь при этом. Акцепторами служат олигосахара и недостроенные полисахариды. Часто первичным акцептором служат олигосахара, в ряде случаев – недостроенный полисахарид – «затравка». Полимеризация идет до образования готового полисахарида с участием специфических гликозилтрасфераз, которые отщепляют фрагменты линейной цепи недостроенного гликана и переносят их на ту же или аналогичную цепь в определенном положении. Синтез полисахаридов определяется условиями культивирования продуцента и составом питательной среды, которые определяют возможность и интенсивность их образования, а также состав, структуру и, следовательно, свойства. Существенное значение имеют не только качественный состав используемого углеродного сырья, но также и концентрация, так как эффективный синтез полисахаридов осуществляется на средах с высоким содержанием углеродного субстрата. Количество и форма источника азота, не влияя на состав полисахаридов, оказывает влияние на скорость роста микроорганизмов и количественных выход полисахаридов. Существенна также роль фосфатов и ионов марганца, магния, кальция, являющихся кофакторами синтеза полисахаридов. Разнообразно и специфично влияние рН и температуры среды на накопления гликанов. Существенен хороший уровень аэрации культуры. Производство полисахаридов специфично для каждого и определяется природой, локализацией, свойствами, а также областью применения гликанов и, безусловно, физиологическими особенностями продуцента. Получение экзополисахаридов эффективнее внутриклеточных, так как их концентрация выше, меньше проблем на стадии выделения и очистки, однако в ходе ферментации возникают трудности с транспортом кислорода из газовой фазы в жидкую (при повышении экскреции гликанов в среду ее вязкость возрастает). Следствием этого становятся снижение роста клеток и торможение продукции полисахарид.Ценным микробным полисахаридом является декстран, образуемый бактериями рода Leucomonstoс. Декстран служит основой получения медицинских препаратов (кровезаменителей) и препаратов для биохимических исследований - сефадексов и др. молекулярных сит. Технология получения декстранов Продуцентами декстранов являются штаммы Leuconostac mesenteroides, растущие на средах с высоким содержанием сахарозы (10–30 %), декстраном-«затравкой», дрожжевым экстрактом и минеральными солями.В зависимости от состава минеральных солей и той или иной природы «затравки» синтезируются высокомолекулярные (60–80 тыс.) линейные или имеющие низкую молекулярную массу (20–30 тыс.) разветвленные декстраны. Последние обладают наибольшей биологической активностью.Из декстранов выпускают плазмозаменители (клинический декстран, полиглюкин, плазмодекс, хемодекс и др.).Типичный пример ферментации – глубинная периодическая культура, реализуемая на первом этапе с целью образования биомассы продуцента при избытке сахаров и рН 6.5–8.0. Синтез декстрансахаразы, ведущий к образованию гликанов, наиболее интенсивен при рН около 7.0. Помимо ионов магния синтез декстранов стимулируется при замене сахарозы мелассой. Бактерии расщепляют сахарозу с образованием глюкозы и фруктозы. Последняя сбраживается по гетероферментному пути с образованием молочной и уксусной кислот, маннита и углекислоты. Глюкоза быстро полимеризуется в декстран. Процесс завершается через 24 ч. Выделение декстрана из культуры проводят метанолом, для последующей очистки –многократно растворяют в воде, переосаждают метанолом и фракционируют. Декстрансахараза является экзоферментом, и ее концентрация в культуральной среде значительна. Поэтому возможен процесс получения полисахарида на основе растворимого фермента. Культуральная жидкость с декстрансахаразой при рН около 5.0 и 15°С способна около месяца проявлять высокую ферментативную активность. Реализован процесс на основе культуральной среды с ферментом, содержащей сахарозу и декстран«затравку», – процесс полимеризации завершается в течении 8 ч. Этот способ значительно упрощает процедуру ферментации и стадию выделения и очистки декстрана и позволяет в контролируемых условиях получать продукт заданной молекулярной массы. Перспективы имеет также процесс на основе иммобилизованной декстрансахаразы. В середине 90-х гг. начат выпуск коньюгатов модифицированного декстрана с ферментом стрептокиназой. Препарат представляет собой пролонгированную декстраном форму стрептокиназы.
Поделиться:

Дата добавления: 2015-09-14; просмотров: 112; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты