![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Газ Ван дер Ваальса. Рівняння Ван дер Ваальса
Ідеальним вважається газ, молекули якого є матеріальними точками, які знаходяться у стані неперервного хаотичного руху та не взаємодіють між собою. Такий газ є фізичною абстракцією, але за властивостями до нього наближаються розріджені гази, у яких можна знехтувати розмірами молекул порівняно із відстанями між ними та їхньою взаємодією. При створенні моделі реального газу намагаються позбавитись обмежень на розміри молекул та їх взаємодію. Одну з таких моделей запропонував у ???? році ???? фізик ???? Ван дер Ваальс. Скориставшись рівнянням стану ідеального газу Клапейрона-Менделєєва
де Сили відштовхування. Якщо врахувати об’єм молекул, то об’єм посудини, у якій вони рухаються зменшиться. Такий об’єм називають вільним об’ємом – тобто об’єм посудини без об’єму молекул. Дія відштовхування зводиться до того, що молекула не допускає проникнення у свій об’єм інших молекул. Отже, сили відштовхування враховуються через деякий ефективний об’єм молекул. У моделі Ван дер Ваальса використана досить груба апроксимація потенціалу Леннарда-Джонса (див. формулу (2.8) і рис.2.1 у лабораторній роботі №2). Оскільки сила відштовхування дуже різко зростає при зближенні молекул, її замінили вертикальною лінією Припустимо, що у посудині із об’ємом Оскільки молекули не можуть підійти одна до одної на відстань, меншу За таких міркувань рівняння стану Клапейрона-Менделєєва (5.1) для одного моля газу набуває вигляду
де Сили притягання. Сили притягання далекодіючі, тому можна молекули вважати матеріальними точками. Наявність сил притягання призводить до того, що тиск реального газу на стінки посудини виявляється меншим, ніж у випадку ідеального газу. На молекулу всередині посудини дія сумарної сили притягання дорівнює нулю. Поблизу стінки молекула має більше сусідів з боку об’єму, тому виникає результуюча сила, що повертає молекулу у об’єм. Тиск, який створює на стінку посудини реальний газ Тиск – це сила, що діє на одиницю площі поверхні. Вона буде пропорційною концентрації молекул
Сили притягання і відштовхування діють одночасно. Для не дуже стиснутих газів дії відштовхування і притягання можна розглядати незалежно, тому у результаті комбінації формул (5.2) і (5.3) для одного моля газу маємо
Це рівняння Ван дер Ваальса, або рівняння стану реального газу. Параметри Для довільної маси газу рівняння Ван дер Ваальса набуває вигляду
Гази, поведінка яких описується рівнянням (5.5), називаються газами Ван дер Ваальса.
|