Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


MISTAKES AND NEGLIGENCE. All scientific research is susceptible to error




All scientific research is susceptible to error. At the frontiers of knowledge, experimental techniques often are pushed to the limit, the signal can be difficult to separate from the noise, and even the question to be answered may not be well defined. In such an uncertain and fluid situation, identifying reliable data in a mass of confusing and sometimes contradictory observations can be extremely difficult.

 

Furthermore, researchers sometimes have to take risks to explore an innovative idea or observation. They may have to rely on a theoretical or experimental technique that is not fully developed, or they may have to extend a conjecture into new realms. Such risk taking does not excuse sloppy research, but it should not be condemned as misguided.

 

Finally, all researchers are human. They do not have limitless working time or access to unlimited resources. Even the most responsible researcher can make an honest mistake in the design of an experiment, the calibration of instruments, the recording of data, the interpretation of results, or other aspects of research.

 

Despite these difficulties, researchers have an obligation to the public, to their profession, and to themselves to be as accurate and as careful as possible. Scientific disciplines have developed methods and practices designed to minimize the possibility of mistakes, and failing to observe these methods violates the standards of science. Every scientific result must be carefully prepared, submitted to the peer review process, and scrutinized even after publication.

 

Beyond honest errors are mistakes caused by negligence. Haste, carelessness, inattention—any of a number of faults can lead to work that does not meet scientific standards or the practices of a discipline.

Researchers who are negligent are placing their reputation, the work of their colleagues, and the public’s confidence in science at risk. Errors can do serious damage both within science and in the broader society that relies on scientific results.

 

Though science is built on the idea that peers will validate results, actual replication is selective. It is not practical (or necessary) to reconstruct all the observations and theoretical constructs made by others. To make progress, researchers must trust that previous investigators performed the work in accordance with accepted standards.

 

Some mistakes in the scientific record are quickly corrected by subsequent work. But mistakes that mislead subsequent researchers can waste large amounts of time and resources. When such a mistake appears in a journal article or book, it should be corrected in a note, erratum (for a production error), or corrigendum (for an author’s error). Mistakes in other documents that are part of the scientific record—including research proposals, laboratory records, progress reports, abstracts, theses, and internal reports—should be corrected in a way that maintains the integrity of the original record and at the same time keeps other researchers from building on the erroneous results reported in the original.

(From On Being a Scientist: Third Edition http://www.nap.edu/catalog/12192.html)

Task 5.Choose 10 unknown words from the text and say what technique you have used to understand their meaning. Write down the words their explanations and examples with them into your glossary. Discuss your findings with the partners

 

Task 6.Match the words from the left column with their probable meaning in the right column. Be careful! There are a few extra meanings on the right.

 

1. susceptible 2. realms 3. haste 4. corrigendum 5. scrutinize 6. erratum 7. sloppy 8. condemn a. express very strong disapproval of sth (sb) b. easily influenced (by) c. mistake in printing or writing d. not careful or thorough enough e. too much speed, often with bad or unwanted results f. quick movement or action g. an area of activity h. examine very closely and carefully i. something to be made correct j. able to have or be changed by k. show the guilt of a person

 

Task 7. Study the given cases (1&2) from On Being a Scientist: Third Edition http://www.nap.edu/catalog/12192.html. Discuss them with the partners. Prove your opinion.

 

(1) Changing Knowledge

In the early part of the 20th century, astronomers engaged in a prolonged debate over what were then known as spiral nebulae—diffuse pinwheels of light that powerful telescopes revealed to be common in

the night sky. Some astronomers thought that these nebulae were spiral galaxies like the Milky Way at such great distances from the Earth that individual stars could not be distinguished. Others believed that they were clouds of gas within our own galaxy.

 

One astronomer who thought that spiral nebulae were within the Milky Way, Adriaan van Maanen of the Mount Wilson Observatory, sought to resolve the issue by comparing photographs of the nebulae taken several years apart. After making a series of painstaking measurements, van Maanen announced that he had found roughly consistent unwinding motions in the nebulae. The detection of such motions indicated that the spirals had to be within the Milky Way, since motions would be impossible to detect in distant objects.

 

Van Maanen’s reputation caused many astronomers to accept a galactic location for the nebulae. A few years later, however, van Maanen’s colleague Edwin hubble, using a new 100-inch telescope at Mount Wilson, conclusively demonstrated that the nebulae were in fact distant galaxies; van Maanen’s observations had to be wrong.

 

Studies of van Maanen’s procedures have not revealed any intentional misrepresentation or sources of systematic error. Rather, he was working at the limits of observational accuracy, and his expectations influenced his measurements. Even cautious researchers sometimes admit, “If I hadn’t believed it, I never would have seen it.”

(2) Discovering an Error

Two young faculty members—Marie, an epidemiologist in the medical school, and Yuan, a statistician in the mathematics department—have published two well-received papers about the spread of infections in populations.

 

As Yuan is working on the simulation he has created to model infections, he realizes that a coding error has led to incorrect results that were published in the two papers. He sees, with great relief, that correcting the error does not change the average time it takes for an infection to spread. But the correct model exhibits greater uncertainty in its results, making predictions about the spread of an infection less definite.

 

When he discusses the problem with Marie, she argues against sending corrections to the journals where the two earlier articles were published. “Both papers will be seen as suspect if we do that, and the changes don’t affect the main conclusions in the papers anyway,” she says. Their next paper will contain results based on the corrected model, and Yuan can post the corrected model on his Web page.

 

1. What obligations do the authors owe their professional colleagues to correct the published record?

2. How should their decisions be affected by how the model is being used by others?

3. What other options exist beyond publishing a formal correction?

PART 2


Поделиться:

Дата добавления: 2015-09-13; просмотров: 164; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты