КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Представление вещественных чисел ⇐ ПредыдущаяСтр 3 из 3 Вещественные числа представляются в ПК в форме с плавающей точкой. Этот формат использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления p в некоторой целой степени n которую называют порядком: R=m*pn Представление числа в форме с плавающей точкой неоднозначно. Например: 25.324=25324*101=0.0025324*104=2532.4*10-2 В ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в нормализованном представлении должна удовлетворять условию: 0.1p m<1p Иначе говоря, мантисса меньше 1 и первая значащая цифра - не 0. В памяти компьютера мантисса представляется как целое число, содержащее только значащие цифры (0 целых и запятая не хранится). Следовательно, внутреннее представление вещественного числа сводиться к представлению пары целых чисел: мантиссы и порядка. Например: 4-x байтовая ячейка памяти. В ячейке должна содержаться следующая информация о числе: - знак числа; - порядок; - значащие цифры мантиссы.
В старшем бите 1-го байта хранятся знак числа: 0 обозначает плюс, 1 - минус. Оставшиеся 7 бит 1-го байта содержат машинный порядок. В следующих трех байтах хранятся значащие цифры мантиссы (24 разряда). В семи двоичных разрядах помещаются двоичные числа в диапазоне от 0000000 до 1111111. Значит, машинный порядок изменяется в диапазоне от 0 до 127 (в десятичной системе счисления). Всего 128 значений. Порядок, очевидно, может быть как положительным так и отрицательным. Разумно эти 128 значений разделить поровну между положительным и отрицательным значениями порядка: от -64 до 63. Машинный порядок смещен относительно математического и имеет только положительные значения. Смещение выбирается так, чтобы минимальному математическому значению порядка соответствовал нуль. Связь между машинным порядком (Мр) и математическим (р) в рассматриваемом случае выражается формулой: Мр = р + 64 Полученная формула записана в десятичной системе. В двоичной системе формула имеет вид: Mp2=p2+10000002 Для записи внутреннего представления вещественного числа необходимо: 1) перевести модуль данного числа в двоичную систему счисления с 24 значащими цифрами; 2) нормализовать двоичное число; 3) найти машинный порядок в двоичной системе счисления; 4) учитывая знак числа, выписать его представление в 4-х байтовом машинном слове. Пример Записать внутреннее представление числа 250,1875 в форме с плавающей точкой. Решение 1) Приведем его в двоичную систему счисления с 24 значащими цифрами: 250.187510=11111010, 0011000000000000002. 2) Запишем в форме нормализованного двоичного числа с плавающей точкой: 0,111110100011000000000000*1021000. Здесь мантисса, основание системы счисления (210=102) и порядок (810=10002) записаны в двоичной системе. 3) Вычислим машинный порядок в двоичной системе счисления: Mp2= 1000 + 100 0000 =100 1000. 4) Запишем представление числа в 4-х байтовой ячейке памяти с учетом знака числа: Шестнадцатеричная форма: 48FA3000. Пример По шестнадцатеричной форме внутреннего представления числа в форме с плавающей точкой C9811000 восстановить само число. Решение 1) Перейдем к двоичному представлению числа в 4-х байтовой ячейке, заменив каждую шестнадцатеричную цифру 4-мя двоичными цифрами: 1100 1001 1000 0001 0001 0000 0000 0000 2) Заметим, что получен код отрицательного числа, поскольку в старшем разряде с номером 31 записана 1. Получим порядок числа: р=10010012 -10000002=10012=910. 3) Запишем в форме нормализованного двоичного числа с плавающей точкой с учетом знака числа: -0,100000010001000000000000 *21001 4) Число в двоичной системе счисления имеет вид: -100000010.0012. 5) Переведем число в десятичную систему счисления: -100000010.0012= -(1*28+1*21+1*2-3)= -258.12510 Варианты заданий 1) Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:
2) Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:
3) Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения:
4) Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения:
Примечание: Для заданий (1-4) вместо Х необходимо подставить свой номер варианта в журнале группы в соответствующей заданию системе счисления.
5) Получить двоичную форму внутреннего представления целого числа в 2-х байтовой ячейке. 6) Получить шестнадцатеричную форму внутреннего представления целого числа 2-х байтовой ячейке. 7) По шестнадцатеричной форме внутреннего представления целого числа в 2-х байтовой ячейке восстановить само число. 8) Получить шестнадцатеричную форму внутреннего представления числа в формате с плавающей точкой в 4-х байтовой ячейке. 9) По шестнадцатеричной форме внутреннего представления вещественного числа в 4-х байтовой ячейке восстановить само число.
|