Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Содержательный подход к измерению информации




Читайте также:
  1. Delphi. Компоненты Image, OpenPictureDialog, SavePictureDialog. Рисование и сохранение графической информации
  2. XV. Мы подходим к самой проблеме
  3. XV. Мы подходим к самой проблеме.
  4. А. Личные мотивы выдачи информации
  5. А. ПОНИМАНИЕ (И ОСОЗНАНИЕ ВАЖНОСТИ) СИСТЕМНОГО ПОДХОДА И ТЕОРИИ ОПТИМИЗАЦИИ
  6. Административный и экономический подходы к управлению качеством
  7. Аккредитованным в Пресс-центре представителям средств массовой информации предоставляется официальная информация Игр (на месте и по каналам связи).
  8. Акмеологический подход в изучении развития зрелой личности
  9. Акмеологический подход в исследовании развития профессионала
  10. Акмеологический подход в решении практических задач

Другое название содержательного подхода – вероятностный. Вероятность - степень возможности появления какого-либо определенного события в тех или иных условиях. Два события называются равновероятными (или равновозможными), если нет никаких объективных причин считать, что одно из них может наступить чаще, чем другое.

Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.

Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной кости, имеющей N граней. Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1, 2, . . . N.

Введем в рассмотрение численную величину, измеряющую неопределенность — энтропию (обозначим ее H). Согласно развитой теории, в случае равновероятного выпадания каждой из граней величины N и H связаны между собой формулой Хартли H = log2 N.

Важным при введении какой-либо величины является вопрос о том, что принимать за единицу ее измерения. Очевидно, H будет равно единице при N = 2. Иначе говоря, в качестве единицы принимается количество информации, связанное с проведением опыта, состоящего в получении одного из двух равновероятных исходов (примером такого опыта может служить бросание монеты при котором возможны два исхода: «орел», «решка»). Такая единица количества информации и является «битом».

Приведем примеры равновероятных сообщений: при бросании монеты: "выпала решка", "выпал орел"; на странице книги: "количество букв чётное", "количество букв нечётное".

Определим теперь, являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина". Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.



Формула Шеннона:

I = — ( p1log2 p1 + p2 log2 p2 + . . . + pN log2 pN),

где pi — вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Вероятность события А определяется формулой:

P(A) = m/n,

где m - число элементарных исходов, благоприятствующих А;

n - число всех возможных элементарных исходов испытания.

Легко заметить, что если вероятности p1, ..., pN равны, то каждая из них равна 1 / N, и формула Шеннона превращается в формулу Хартли.

Рассмотрим следующий пример. Пусть при бросании несимметричной четырехгранной пирамидки вероятности выпадения граней будут следующими: p1=1/2, p2=1/4, p3=1/8, p4=1/8, тогда количество информации, получаемое после броска, можно рассчитать по формуле:

Для симметричной четырехгранной пирамидки количество информации будет: H=log24=2(бит).

Заметим, что для симметричной пирамидки количество информации оказалось больше, чем для несимметричной пирамидки. Максимальное значение количества информации достигается для равновероятных событий.




Дата добавления: 2015-09-15; просмотров: 7; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты