Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Водный обмен растений




Читайте также:
  1. Автоматические регуляторы. Определение закона регулирования регулятора (на примере САР теплообменника). Классификация линейных регуляторов. Нелинейный регулятор (пример)
  2. Б) свободный обмен кредитных $ на металлические
  3. Белковый обмен
  4. Буфер обмена и технология OLE.
  5. В. Обмен.
  6. Вводный инструктаж
  7. ВЗАИМОДЕЙСТВИЕ КАК ОБМЕН: ДЖОРДЖ ХОУМАНС
  8. Вид, его признаки. Многообразие видов. Редкие и исчезающие виды растений и животных, меры их сохранения. Назовите известные вам редкие и исчезающие виды растений.
  9. Влажность в наземно-воздушной среде. Адаптации растений и животных.
  10. Влияние ГКС на обменные процессы

Водный ток обеспечивает связь между отдельными органами. Насыщенность клеток водой – тургор – обеспечивает прочность тканей и транспорт питательных веществ по растению.

По растению вода передвигается из области с высоким водным потенциалом (из почвы) в область с низким водным потенциалом (атмосфера) по градиенту водного потенциала.

Непрерывный водный ток растения начинается с поглощения воды поверхностью корней, проходит через все растение и заканчивается на испаряющейся поверхности листьев.

Водообмен растений складывается из трех этапов:

1. Поглощение воды корнем

2. Передвижение по сосудам

3. Испарение воды листьями

Поглощение воды корнями. Вода и минеральные вещества поглощаются клетками эпидермиса корня в зоне поглощения. Вода поступает в клетки корня за счет осмотических сил, переходя из участков с высоким водным потенциалом в почве в участки с более низким водным потенциалом в клетках корня.

В корне также существует градиент водного потенциала. Он высокий в корневых волосках и низкий в клетках, примыкающих к ксилеме. Поэтому вода проходит через корневые волоски к ксилеме, а затем передвигается вверх по растению.

Градиент водного потенциала поддерживается за счет того, что осмотическое давление в ксилемном соке выше, чем в разбавленном почвенном растворе.

Сосущая сила сосудов ксилемы выше, чем у окружающих клеток, поэтому в них развивается гидростатическое давление - корневое давление. Оно обеспечивает поднятие ксилемного раствора из корня вверх по растению в надземные части. Механизм поднятия воды по растению вследствие развивающегося корневого давления называется нижним концевым двигателем. Примером нижнего концевого двигателя служит «плач растений». Весной у деревьев с нераспустившимися листьями через надрезы ствола выделяется ксилемная жидкость. У вегетирующих растений при удалении стебля из пенька долго выделяется ксилемный сок или пасока. Другим примером нижнего концевого двигателя служит гуттация. При высокой влажности воздуха в результате деятельности нижнего концевого двигателя выделяется капельно-жидкая влага на концах листьев, как, например, у комнатного растения монстеры.

Передвижение воды по сосудам. От корней вверх по растению вода поднимается по ксилеме. Сосуды ксилемы – это мертвые трубки с узким просветом. Согласно теории сцепления (когезии) подъем воды от корня обусловлен испарением воды из клеток листа. Испарение приводит к снижению водного потенциала клеток мезофилла листа, примыкающихх к ксилеме. Вода входит в эти клетки из ксилемного сока и испаряется через устьица.



Сосуды ксилемы заполнены водой и по мере того, как вода выходит из сосудов, в столбе воды от корня к листьям создается натяжение. Оно передается вниз по стеблю на всем пути от листа к корню благодаря сцеплению молекул воды – когезии. Сцепление молекул воды происходит за счет их электрических сил и удерживается за счет водородных связей.

Молекулы воды также прилипают к стенкам сосудов за счет адгезии. Это препятствует образованию в сосудах ксилемы образованию полостей, заполненных воздухом и парами воды, что облегчает натяжение водного столба и транспорт воды.

В результате высокой когезии молекул воды натяжение водного столба настолько велико, что может тянуть весь столб воды вверх, создавая массовый поток.

Испарение воды листьями. По сосудам ксилемы вода поступает вверх от корня к листьям, где испаряется через устьица листа. Процесс испарения воды называется транспирацией.



Транспирация слагается из 2 процессов:а) передвижение воды из листовых жилок в поверхностные слои стенок клеток мезофилла;б) испарение воды из клеточных стенок в межклеточные пространства с последующей диффузией в атмосферу через устьица (устьичная или кутикулярная транспирация).

Испарение происходит за счет того, что водный потенциал в клетках листа и межклетниках выше, чем в атмосферном воздухе. В межклетниках воздух насыщен водой наполовину, а водный поток межклетников уравновешен с водным потенциалом окружающих клеток. Поэтому молекулы воды покидают растения, перемещаясь в сторону более низкого водного потенциала в атмосферный воздух..

В результате потери воды клетками в них снижается водный потенциал и возрастает сосущая сила. Это приводит к усилению поглощения воды клетками листа из ксилемы жилок и поступлению воды из корня в листья. Этот механизм поступления воды называется верхним концевым двигателем. Он обеспечивает передвижение воды вверх по растению, а создается и поддерживается высокой сосущей силой транспирирующих клеток мезофилла. Чем активнее транспирация, тем больше сила верхнего концевого двигателя.


Дата добавления: 2015-01-29; просмотров: 37; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты