КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Современные структуры транзисторовКачество ПТШ зависит от совершенства материала активного n-слоя (высокая подвижность электронов), длины канала L и сопротивлений стока и истока. На рис. 6.6представлена структура ПТШ. Буферный n-слой толщиной 1...2 мкм создается методом эпитаксии на полуизолирующей подложке. Он снимает эффект паразитного управления, а также исключает проникновение в активный n-слой неконтролируемых примесей из подложки. Активный n-слой толщиной около 0,2 мкм создается методом эпитаксии или ионного легирования. В качестве донорных примесей используются кремний, селен или сера. Необходимая величина порогового напряжения обеспечивается прецизионным травлением активного слоя до нужной толщины (заглубленный затвор). Большая толщина пассивных областей стока и истока обеспечивает снижение сопротивлений Rn и Rc. Оптическая литография позволяет получать длину затвора около 1 мкм при расстоянии между электродами стока и истока около 4 мкм. Снижению сопротивлений Rn и Rc способствует создание поверх активного n-слоя тонкого контактного n+-слоя (рис.6.6, б). Межэлементная изоляция осуществляется либо путем стравливания Омические контакты стока и истока создаются вакуумным напылением слоя AuGe (~ 0,1 мкм) и затем слоя Ni, Аи или Pt (< 0,1 мкм) с последующим отжигом. Для затворного контакта Шоттки применяются тугоплавкие металлы (Pt, Ti, W, Аи и др.) либо силициды вольфрама или титана. Наиболее перспективным методом получения активных слоев для больших интегральных схем является селективное ионное легирование чистой подложки. Для этого подложка должна иметь высокое удельное сопротивление и высокую подвижность электронов (последнее необязательно при использовании эпитаксиальных структур). Межэлементная изоляция при этом обеспечивается автоматически. Рисунок 6.6– Структура ПТШ с заглубленным затвором: Для снижения сопротивлений стока и истока применяются методы самосовмещения, позволяющие максимально сократить или вообще исключить зазор между каналом и n+-слоем. Структура ПТШ с длиной затвора lз =0,25 мкм, изготавленная методом электронно-лучевой литографии и ионной имплантации, представлена на рисунке 6,7 а, б. Поперечное сечение канала показано на рисунке 6.7,а профиль затвора треугольный; в плане (вид сверху на рис. 6.7,б) затвор Т-образный, шириной 75 мкм, Такое питание затвора уменьшает паразитные емкости и расфазировку управляющего сигнала при его распространении по ширине затвора при прочих равных условиях повышает fmax примерно в два раза. Данный транзистор на частоте 60 ГГц имел усиление около 6 дБ при Кш≈8 дБ.
Рисунок 6.7 Малошумящий полевой транзистор с барьером Шотки и Т-образным затвором длиной 0,25 мкм миллиметрового диапазона волн: а- форма канала и затвора; б – вид сверху В заключение отметим, что структуры ПТШ без электрода стока или с объединенными электродами стока и истока используются в качестве планарных диодов Шоттки. В последнем случае за счет снижения сопротивления базы RE =(R-1И+R-1с)-1 достигается минимальное значение постоянной времениRБС, которая может составлять менее одной пикосекунды. 6.6 Сравнительная характеристика полевого транзистора с управляющим p-n-переходом и ПТШ Принцип действия полевого транзистора с управляющим p-n-переходом (ПТУП) аналогичен принципу действия ПТШ, только вместо барьерного контакта Шоттки для модуляции толщины канала используется p-n-переход. Под действием напряжения затвор–исток изменяется толщина ОПЗ p-n-перехода,изменяя ток стока. Изменение толщины канала соответствует изменению толщины ОПЗ n-области p-n-перехода Xdnn-конального ПТУП. Соотношение между толщинами ОПЗn- и р- областей перехода определяется результирующими концентрациями примесей в затворе Naи канале Nd. Из условия электронейтральности ОПЗ NdXdn = NaXdp, где Xdn и Xdp – части ОПЗ в n- и p-областях, соответственно и, естественно, Xd = Xdn+Xdp. Следовательно, , и где Км – коэффициент модуляции толщины канала. При Км = 1 степени управления токами стока путем изменения толщины канала в ПТУП и ПТШ идентичны Практически величина составляет 0,9…0,95 так как Nd <<Na, что приводит к соответствующему снижению крутизны ПТУП. ПТ с управляющим p-n-переходом имеет большие, чем ПТШ значения емкостей Сзи, Сзс и Сси, так как включают торцевые емкости p-n-перехода. Преимуществом ПТУП является большая величина контактной разности потенциалов φк по сравнению с барьерным потенциалом φ, так как величина с учетом большей величины Nd и малой niсоставляет обычно около 1,2 В, что существенно расширяет диапазон рабочих напряжений затвор – исток нормально закрытых ПТУП. Другим важным преимуществом является возможность создания в ИМС комплементарных транзисторных пар с каналами n- и р-типа. При использовании ПТШ такая возможность практически отсутствует из-за трудностей создания высококачественных контактов Шоттки к . Заметим, что р-канальные ПТ на арсениде галлия не обладают высоким быстродействием ввиду низкой подвижности дырок. Однако цифровые ИМС на комплементарных ПТ с управляющим p-n-переходом обладают исключительно высокой радиационной стойкостью. Их радиационная стойкость значительно выше, чем биполярных транзисторов (где существенную роль играют неосновные носители, концентрация которых изменяется при облучении) и МОПТ (чьи характеристики деградируют из-за радиационных дефектов в окисле и на границе Si–SiO2). Недостатком ПТУП является возможная инжекция дырок в n-канал при сильном отпирании управляющего перехода. Инжектированные дырки обладают низкой подвижностью, и их рассасывание замедляет процесс выключения ПТУП. Наиболее перспективным технологическим методом создания ПТ с управляющим p-n-переходом является ионная имплантация донорных и акцепторных примесей в чистую подложку . В качестве акцепторов применяются бериллий или магний. Контрольные вопросы 1. Как реализуется принцип усиления сигнала в ПТШ? 2. В чем принцип деления ПТШ на «нормально открытые» и «нормально закрытые»? 3. Какие допущения принимаются при выводе аналитических выражений ВАХ ПТШ? 4. На какие параметры ПТШ влияют сопротивления истока и стока? 5. Чем определяется величина частоты отсечки ПТШ? 6. В чем проявляется «эффект паразитного управления»? 7. Что собой представляют современные структуры ПТШ? 8. В чем преимущества и недостатки ПТШ по сравнению с полевым транзистором с управляющим p-n переходом? Литература 1. В. А. Гольдаде, П. С. Пинчук. Физика конденсированного состояния. Минск: «Беларуская Навука», 2009г. 2. С. Зи. Физика полупроводниковых приборов. В 2-х книгах. М.: Мир, 1984г. 3. Р. Маллер, Т. Кейминс. Элементы интегральных схем. М.: Мир, 1989г. 4. Б. С. Колосницын. Элементы интегральных схем. Физические основы. Минск: БГУИР, 2011г. 5. Д. Ферри, П. Эйкерс, Э. Гринич. Электроника ультрабольших интегральных схем. М.: Мир, 1991г. 6. В. И. Старосельский. Физика полупроводниковых приборов. М.: Высшее образование. Юлат-издание, 2009г. 7. И. П. Степаненко. Основы микроэлектроники. М.: Лаборатория базовых знаний, 2001г. 8. И. Е. Еоримов, И. Я. Козырь. Основы микроэлектроники. М.: Лань, 2008г. 9. Ю. А. Парменов. Элементы твердотельной наноэлектроники. М.: МИЭТ, 2011г. 10. Г. И. Зебрев. Физические основы кремнеивой наноэлектроники. М.: Бином, Лаборатория знаний, 2011г. 11. А. И. Белоус, В. А. Емельянов, В. С. Сякерский. Проектирование интегральных микросхем с пониженным энергопотреблением. Минск: Интегралполиграф. 2009г.
|