Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Теплоемкость газов. Уравнение Майера.




Читайте также:
  1. Адиабатический процесс. Уравнение Пуассона.
  2. Бегущие волны описываются [1] волновым уравнением
  3. В приближении идеального газа уравнение Клапейрона -Клаузиуса примет вид
  4. Вещественный состав природных УВ газов. Метод газовой хромотографии.
  5. Внутренняя энергия и количество теплоты. Теплоемкость.
  6. Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение.
  7. Вопрос. Вещественный состав нефти и природных газов. Основные свойства и промышленные классификации нефти(Билет№6)
  8. Второе уравнение Максвелла является обобщением …: закона электромагнитной индукции
  9. Вязкость. Уравнение Ньютона.
  10. Газовые законы. Уравнение Менделеева-Клапейрона.

Теплоемкость идеального двухатомного газа.

 

Теплоемкостью системы тел (тела) называется физическая величина, равная отношению количества теплоты dQ, которое нужно затратить для нагревания системы тел (тела), к изменению температуры dТ, характеризующей это нагревание:

. [C]=Дж/К.

Удельной теплоемкостью вещества с называется скалярная величина, равная отношению теплоемкости однородного тела С к его массе:

. [c]= Дж/(кг.К) (9.3.1)

Молярной теплоемкостью называется физическая величина, численно равная отношению теплоемкости системы С к количеству вещества n, содержащегося в ней:

. [Cm]=Дж/(моль.К) (9.3.2)

Различают молярные теплоемкости при постоянном объеме СV и постоянном давлении Cp:

; . (9.3.3)

Уравнение, связывающее молярные теплоемкости при постоянном давлении и постоянном объеме имеет вид (уравнение Майера):

Cp – CV= R, (9.3.4)

где R – универсальная газовая постоянная.

Учитывая распределение энергии по степеням свободы и уравнение Майера (9.3.4), получим распределение теплоемкостей Cp и CV по степеням свободы:

,

, .

При рассмотрении термодинамических процессов удобно пользоваться соотношением: .

Величина g - показатель адиабаты - определяется числом и характером степеней свободы молекулы (табл.1).

 

Таблица 1.

 

Молекула Число степеней свободы CV Cp g
Поступательное движение Вращательное движение. i
Одноатомная - 1,67
Двухатомная 1,40
Трехатомная 3R 4R 1,33

 

Обратимся к двухатомной молекуле. Если связь между атомами жесткая, то число степеней свободы равна 5 (три поступательных и две вращательных). Теперь предположим, что связь упругая, то есть атомы могут совершать колебания друг относительно друга. Тогда требуется еще одна координата для определения конфигурации молекулы, это расстояние между атомами. Следовательно, у двухатомной молекулы в общем случае шесть степеней свободы. Во многих случаях колебательное движение атомов не возбуждается. Но если колебания совершаются и их амплитуды малы (по сравнению с расстоянием между атомами), то такие колебания можно считать гармоническими. Атомы в этом случае являются гармоническими осцилляторами. Но осциллятор обладает как кинетической, так и потенциальной энергией. Для гармонического осциллятора, как известно из механики, средние значения кинетической и потенциальной энергии равны между собой. Тогда по закону равнораспределения на каждую колебательную степень свободы приходится kT/2 в виде кинетической энергии и kT/2 в виде потенциальной энергии. Энергия, приходящаяся на одну колебательную степень свободы равна не kT/2, а 2. kT/2= kT. Поэтому при подсчете степеней свободы надо число колебательных степеней свободы удвоить.



Для двухатомного газа

,

 
 

причем СV не зависит от температуры. Экспериментально было доказано (рис.8.3.), что в определенном интервале температур эта теплоемкость составляет всего (5/2)R, при очень низких температурах она уменьшалась до (3/2)R, а при высоких становится больше 3R.

Это означает, что при низких температурах молекулы участвуют только в поступательном движении. По мере повышения температуры Т молекулы начинают совершать и вращательные движения. И лишь при высоких температурах она совершает все три вида движения (добавляется колебательное).



Классическая теория такое поведение объяснить не может. Объяснение было получено в рамках квантовой теории. В зависимости теплоемкости от температуры проявляются квантовомеханические свойства молекул - энергия вращательного и колебательного движения у них меняется скачками на величину hn, где n- частота вращения или колебания, h - постоянная Планка. Так как получить такой прирост энергии молекула может лишь при соударении с другой, движущейся с большей поступательной скоростью, то при низких температурах колебания и вращения не происходят (соответствующие степени свободы «вымораживаются»). При более высокой температуре средняя энергия, приходящаяся на каждую из этих степеней, зависит от соотношения между hn и kT.

 

 


Дата добавления: 2015-02-09; просмотров: 25; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты