КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Вещества, содержащиеся в природной водеПриродная вода существует не в виде химического соединения, состоящего из водорода и кислорода, а представляет собой сложное тело, в состав которого помимо молекул воды входят самые разнообразные вещества. Все они играют ту или иную роль в жизни водного населения. Наибольшее экологическое значение для него имеют степень насыщения воды различными газами, концентрация ионов минеральных солей, водородных ионов и органических веществ, состав и концентрация взвешенных веществ. Газы. Количество отдельных газов, присутствующих в воде, зависит от их природы, парциального давления в атмосфере и состояния самой воды, в частности ее температуры и солености. То количество газа, которое может раствориться в воде при данных условиях, называется нормальным. Иногда количество газа выражается не в абсолютных показателях (объемных или весовых), а в процентах от нормального содержания (степень насыщения воды газом). Растворимость газов не зависит от гидростатического давления, т. е. нормальное содержание их одинаково на всех глубинах. Нередко для характеристики респираторных условий в воде указывают парциальное давление Ог (в паскалях или миллиметрах ртутного столба). Зная нормальное содержание Ог (табл. 1), можно определить его количество в единице объема воды при разных парциальных давлениях газа и наоборот. Наибольшее значение для водного населения имеют кислород, углекислый газ, сероводород и метан. Кислород. Обогащение воды кислородом в основном происходит за счет его инвазии (вторжения) из атмосферы и выделения фотосинтезирующими растениями. Убыль газа наблюдается в результате его эвазии (выхода) из воды в атмосферу и потребления на окислительные процессы, в частности на дыхание. Иногда содержание кислорода в водоемах может существенно меняться за счет поступления вод с более высокой или низкой концентрацией газа. Коэффициент абсорбции кислорода водой при 0°С равен 0,04898. Следовательно, при нормальном содержании этого газа в атмосфере (210 мл/л) в 1 л воды будет растворено 210-0,04898= = 10,29 мл кислорода. С повышением температуры и солености коэффициент абсорбции уменьшается и величина нормального содержания кислорода снижается (табл. 1). Кислородный режим водоемов и их отдельных зон зависит от очень большого числа факторов. Так как инвазия кислорода из атмосферы происходит только через поверхность воды и зона фотосинтеза располагается в верхнем слое, последний, как правило, более насыщен кислородом, чем нижележащая толща. Однако на распределение кислорода весьма заметно влияют процессы перемешивания воды, протекающие неодинаково в отдельных водоемах и в разное время года. Во многих континентальных водоемах существенное значение для аэрации грунта имеют соединения марганца и железа. Выпадая на грунт из воды в виде плохо растворяющихся окисных соединений, они, отдавая кислород грунту, переходят в растворимые закисные соединения, которые поступают в воду, окис- Таблица 1. Растворимость атмосферного кислорода в воде в зависимости от температуры и солености (мл/л)
ляются здесь и, снова превращаясь в окиси, оседают в грунт. Если поверхностные и глубинные слои резко отличаются друг от друга по содержанию кислорода, говорят о кислородной дихотомии. Равномерное распределение кислорода во всей водной массе называется гомооксигенией, которая наблюдается во время энергичного перемешивания, охватывающего всю водную массу. Кислородная дихотомия возникает в период стагнации (застоя) водоемов, когда отсутствует вертикальная циркуляция водных масс. Для водного населения в отличие от наземного кислород представляет собой решающий фактор среды. На суше, где воздух практически всегда содержит много кислорода, животные редко страдают от его недостатка. Иная картина наблюдается в воде. Кислорода в ней достаточно (полное насыщение) далеко не везде и всегда, поэтому респираторная обстановка для гидробионтов часто становится критической. Нередко считают, что условия дыхания в водной среде хуже, чем на суше. Это не совсем точно. Наземные животные обычно получают кислород через дыхательные поверхности, покрытые жидкостью, в которой растворяются атмосферные газы. Жидкости эти насыщаются кислородом не больше, а подчас меньше, чем хорошо аэрированные природные воды, соприкасающиеся с дыхательными поверхностями гидробионтов. Таким образом, респираторные условия у гидробионтов, обитающих в хорошо аэрированной воде, не хуже, чем у наземных животных. Положение резко меняется, когда концентрация кислорода в воде снижается до очень малых величин, что нередко наблюдается на глубине, у поверхности грунта и в его толще. По отношению к кислороду организмы делятся на эври- и сте- ноксидные формы (эври- и стеноксибионты), способные соответственно жить в пределах широких и узких колебаний рассматриваемого фактора. Из эвриоксидных форм можно назвать рачков Cyclops strenuus, червей Tubifex tubifex, моллюсков Viviparus vivipa- rus и ряд других организмов, способных жить в условиях почти полного отсутствия или высокого содержания кислорода. К стено- ксибионтам относятся ресничные черви Planaria alpina, рачки Му- sis relicta, Bythotrephes, личинки комаров Lauterbornia и другие животные, не выдерживающие падения концентрации кислорода ниже 3—4 мл/л. В случаях, когда адаптация гидробионтов к дефициту кислорода оказывается недостаточной, наступает их гибель. Если она приобретает массовый характер и наблюдается на значительной акватории, говорят о заморе. Углекислый газ. Обогащение воды С02 происходит в результате дыхания водных организмов, за счет инвазии из атмосферы и выделения изразличных соединений, в первую очередь из солей угольной кислоты. Снижение концентрации СОг в воде в основном идет за счет его потребления фотосинтезирующими организмами и связывания в соли угольной кислоты. Коэффициент абсорбции СОг при температуре 0°С равен 1,713. Следовательно, при нормальном содержании газа в атмосфере (0,3 мл/л) и температуре 0°С в 1 л воды может раствориться Сероводород. В водоемах он образуется почти исключительно биогенным путем за счет деятельности различных бактерий. Для водного населения он вреден как косвенно — через снижение концентрации кислорода, идущего на окисление S2- до S, так и непосредственно. Для многих гидробионтов он смертелен даже в самых малых концентрациях. Обитающие в чистой воде полихеты Nereis zonata, Phyllodoce tuberculata, рачки Daphnia longispina и многие другие организмы не переносят даже следов сероводорода. Терпимее к нему формы, живущие среди гниющего ила. По- лихета N. diversicolor способна жить 6 дней в воде с концентрацией H2S до 8 мл/л, червь Capitella capitata — 8 дней при концентрации до 20,4 мл/л. С возрастом устойчивость к ядовитому действию H2S у гидробионтов обычно повышается. Так, для молодых, средневозрастных и взрослых рачков Artemia salina летальная концентрация H2S соответственно равна 76,88 и 109 мл/л (Воскресенский и Хайдаров, 1968). Образование больших количеств этого газа может вызывать заморы, как нередко наблюдается летом в Каспийском и Азовском морях во время штилей. Достаточно шторму перемешать воду, чтобы кислород, насытив водную толщу, окислил сероводород и заморные явления прекратились. В морях H2S образуется почти исключительно за счет восстановления серы сульфатов гетеротрофными десульфирующими бактериями, которые, обитая в анаэробных условиях, используют сульфаты в качестве акцептора водорода при метаболическом окислении. Количество H2S, образованного в результате деятельности десульфирующих бактерий (главным образом Desulfovibrio), иногда настолько велико, что им насыщаются придонные слои воды толщиной в десятки и сотни метров. В Черном море от сероводорода свободен только поверхностный слой в 150—250 м, вся же остальная толща воды содержит этот газ и потому почти безжизненна. В значительной мере насыщены сероводородом глубины Каспийского моря и норвежских фиордов, отделенных от моря более или менее высокими барьерами, препятствующими обмену воды. Так, в Миофиорде близ Бергена H2S начинает встречаться с глубины 60 м. Метан. Подобно сероводороду, ядовит для большинства гидробионтов. Образуется при микробиальном разложении клетчатки и других органических веществ. Обычно его объем составляет около 30—50% от всех газов, выделяемых донными отложениями в воду. Скорость образования метана зависит главным образом от количества разлагаемого субстрата и температуры. В водоемах- охладителях АЭС выделяется до 200—300 мл СН4 на 1 м2 в сутки. В р. Саар на загрязненных участках суточный синтез метана в толще воды достигает 1,5 мкмоль/л, в более чистых — 0,2— 0,5 мкмоль/л (Zaiss, 1979). На мелководьях тропических морей из илистых грунтов в сутки выделяется 30—40 мкмоль/м2, из крупнодисперсных— примерно в 10 раз меньше. Особенно много метана выделяют грунты прудов и озер с высоким содержанием органических веществ. Ионы минеральных солей. Суммарную концентрацию всех минеральных ионов, имеющихся в воде, обозначают как ее соленость. Наиболее часто соленость пресных вод выражается в миллиэквивалентах, а морских вод — в граммах на 1 кг, или в промилле (%0). Значение минеральных ионов в жизни гидробионтов очень многогранно. Одни из них, получившие название биогенов, необходимы растениям для обеспечения процессов биосинтеза. К таким биогенам, лимитирующим рост и развитие гидрофитов, в первую очередь относятся ионы, содержащие азот, фосфор, кремний, железо. Другое значение минеральных ионов связано с влиянием на солевой состав гидробионтов (диффузия через их наружные покровы). Суммарная концентрация ионов определяет тонич- ность внешней среды водных организмов, условия их осморегуля- торной работы. Наконец, с повышением солености воды возрастает ее плотность и вязкость, что существенно сказывается на плавучести гидробионтов и условиях их движения.
|