КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Неустановившееся истечение жидкости из резервуаров.Истечение из резервуара произвольной формы с постоянным притоком. Резервуары являются наиболее распространёнными хранилищами различных жидкостей. К наиболее существенным технологическим операциям с резервуарами относятся операции заполнения резервуаров и операции опорожнения. Если операция заполнения никаких существенных проблем перед гидравликой не ставит, то опорожнение резервуара может рассматриваться как прямая гидравлическая задача. Пусть, в самом общем случае, имеем резервуар произвольной формы (площадь горизонтального сечения резервуара является некоторой функцией его высоты). В резервуар поступает жидкость с постоянным расходом Q0. Задача сводится к нахождению времени необходимого для того, чтобы уровень жидкости в резервуаре изменился с высоты взлива до . Отметим, что площадь горизонтального сечения резервуара несоизмеримо велика по сравнению с площадью живого сечения вытекающей струи жидкости, т. е величиной скоростного напора в резервуаре можно пренебречь (уровень жидкости в резервуаре меняется с весьма малой скоростью). Величина расхода при истечении жидкости является переменной и зависит от напора, т.е. текущей высоты взлива жидкости в резервуаре Уровень жидкости в резервуаре будет подниматься, если и снижаться когда , при притоке уровень жидкости в резервуаре будет постоянным. Поскольку движение жидкости при истечении из отверстия является неустановившемся, решение поставленной задачи осуществляется методом смены стационарных состояний. Зафиксируем уровень жидкости в резервуаре на отметке . Этому уровню будет соответствовать расход жидкости при истечении из отверстия: За бесконечно малый интервал времени из резервуара вытечет объём жидкости равный: За этот же интервал времени в резервуар поступит объём жидкости равный: Тогда объём жидкости в резервуаре изменится на величину : Выразив величину притока жидкости в резервуар Qo подобно расходу Q, получим: Тогда время, за которое уровень жидкости изменится на величину dH : Для дальнейшего решения резервуар следует разбить на бесконечно тонкие слои, для которых можно считать, что площадь сечения резервуара в пределах слоя постоянна. Тем не менее, практического значения задача (в общем виде) не имеет. Чаще всего требуется искать время полного опорожнения резервуара правильной геометрической формы: вертикальный цилиндрический резервуар (призматический), горизонтальный цилиндрический, сферический. Истечение жидкости из вертикального цилиндрического резервуара. Вертикальный цилиндрический резервуар площадью поперечного сечения S заполнен жидкостью до уровня Н. Приток жидкости в резервуар отсутствует. Тогда дифференциальное уравнение истечения жидкости будет иметь вид: i Для начала определим время необходимое для перемещения уровня жидкости с отметки до Когда = Н а = 0, то время полного опорожнения резервуара составит: Таким образом, время полного опорожнения резервуара в два раза больше, чем время истечения этого же объёма жидкости при постоянном напоре равном максимальному напору Я. Истечение жидкости из горизонтального цилиндрического резервуара. В отличие от вертикального резервуара, площадь сечения свободной поверхности и горизонтального сечения резервуара - величина переменная и зависит от уровня жидкости в резервуаре. Время полного опорожнения резервуара: или, обозначив: D = 2 получим: Переток жидкости между резервуарами при переменных уровнях жидкости. Если два резервуара соединены между собой, то при разных уровнях жидкости в этих резервуарах будет происходить переток жидкости из резервуара с более высоким положением уровня свободной поверхности в резервуар, где эта поверхность будет расположена на более низкой отметке. Переток будет осуществляться при переменном (убывающем) расходе и продолжаться до тех пор, пока уровни жидкости в обоих резервуарах не сравняются. Рассмотрим два резервуара А и В, соединённые между собой трубопроводом с площадью сечения s. Питающий резервуар А имеет более высокий уровень жидкости С - С' относительно плоскости сравнения О - О, который равен , площадь сечения резервуара А равна . Приёмный резервуар В имеет более низкий уровень жидкости D - D', который относительно плоскости сравнения равен z2, площадь сечения этого резервуара - . Переток жидкости обеспечивается переменным действующим напором равным Н = . Поскольку оба этих уровня меняются во времени,, то и действующий напор Я тоже будет переменным. Пусть начальный действующий напор будет равен , а действующий на- пор на конец интересующего нас периода будет равным (в общем случае он может быть не равен 0). Тогда за время dt из резервуара А в резервуар В при некотором напоре Я через соединительный трубопровод перетечёт объём жидкости равный: ? где: - коэффициент расхода системы, т.е. соединительного трубопровода. При этом в резервуаре А уровень жидкости понизится на величину , а в резервуаре В, наоборот, повысится на величину . При этом действующий напор также изменится на величину: Изменения уровней жидкости в резервуарах будут связаны между собой: ? Тогда: •> откуда: Поскольку площадь сечения резервуара постоянная, то необходимо лишь выразить через действующий напор Н. , тогда: , откуда: Окончательно: > или: В том случае, когда уровни в резервуарах сравняются :
|