КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Восьмеричная и шестнадцатиричная системы счисленияС точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые в этом пункте системы представляют большой интерес. Хотя компьютер «знает» только двоичную систему счисления, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатиричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста - гораздо проще переводов между любой из этих трех систем и десятичной. Перевод чисел из десятичной системы счисления в восьмеричную производится (по аналогии с двоичной системой счисления) с помощью делений и умножений на 8. Например, переведем число 58,32(10): 58 : 8 = 7 (2 в остатке), 7 : 8 = 0 (7 в остатке). 0,32 • 8 = 2,56, 0,56 • 8 = 4,48, 0,48-8=3,84,... Таким образом, 58,32(10) =72,243... (8) (из конечной дроби в одной системе может получиться бесконечная дробь в другой). Перевод чисел из десятичной системы счисления в шестнадцатиричную производится аналогично. С практической точки зрения представляет интерес процедура взаимного преобразования двоичных, восьмеричных и шестнадцатиричных чисел. Для этого воспользуемся табл. 1.6 чисел от 0 до 15 (в десятичной системе счисления), представленных в других системах счисления. Для перевода целого двоичного числа в восьмеричное необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент. Например: 11011001= 11011001, т.е. 11011001(2) =331(8). Заметим, что группу из трех двоичных цифр часто называют «двоичной триадой». Перевод целого двоичного числа в шестнадцатиричное производится путем разбиения данного числа на группы по 4 цифры - «двоичные тетрады»: 1100011011001 = 1 1000 1101 1001, т.е. 1100011011001(2)= 18D9(16). Для перевода дробных частей двоичных чисел в восьмеричную или шестнадцатиричную системы аналогичное разбиение на триады или тетрады производится от точки вправо (с дополнением недостающих последних цифр нулями): 0,1100011101(2) =0,110 001 110 100 = 0,6164(8), 0,1100011101(2) = 0,1100 0111 0100 = 0,C74(16). Перевод восьмеричных (шестнадцатиричных) чисел в двоичные производится обратным путем - сопоставлением каждому знаку числа соответствующей тройки (четверки) двоичных цифр. Соответствие чисел в различных системах счисления
Преобразования чисел из двоичной в восьмеричную и шестнадцатиричную системы и наоборот столь просты (по сравнению с операциями между этими тремя системами и привычной нам десятичной) потому, что числа 8 и 16 являются целыми степенями числа 2. Этой простотой и объясняется популярность восьмеричной и шестнадцатиричной систем в вычислительной технике и программировании. Арифметические действия с числами в восьмеричной и шестнадцатиричной системах счисления выполняются по аналогии с двоичной и десятичной системами. Для этого необходимо воспользоваться соответствующими таблицами. Контрольные вопросы 8.Как Вы понимаете понятие информации и какое определение можно дать? 9.Как называется форма представления информации? 10. Какие существуют подходы к определению количества информации и кто их открыл? 11. Чем отличается байт от бита? 12.Более крупные единицы измерения информации и как они определяются? 13. Сколько различных информации можно написать одним байтом и обоснуйте почему? 14. В чем состоит процедура дискретизации непрерывной информации? 15. Что такое кодирование? 16. Какая форма представления информации - непрерывная или дискретная приемлема для компьютеров и почему? 17.В чем отличие позиционной системы счисления от непозиционной?
|