Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



ЛЕКЦИЯ 10.

Читайте также:
  1. Денежные потоки предприятия как объект управления. Методы их оценки. (по лекциям Глаголевой)
  2. Жаппай және Коллекциялық.
  3. КОЛЛЕКЦИЯ САМЫХ ВКУСНЫХ И КРАСИВЫХ СА ЛАТОВ !
  4. Концепции современного естествознания Слайдлекция по модулю 7088.02.01;СЛ.07;1
  5. Лекция 1
  6. Лекция 1
  7. Лекция 1
  8. ЛЕКЦИЯ 1
  9. Лекция 1
  10. Лекция 1 1 страница

zmin – минимальное количество зубьев нулевого зубчатого колеса, которое можно нарезать без подреза.

где a = 20о , ha* = 1.

Т.к. z должно быть целым, при zmin = 18 гарантировано, что подреза не будет.

 

4.6.3 Основные расчетные зависимости для определения параметров зубчатого колеса, исходя из схемы станочного зацепления.

1. Радиус окружности вершин ra.

ra = r + xm + ha*m – Δуm (1)

Δуm – уравнительное смещение инструмента (расстояние между граничной прямой инструмента и окружностью вершин заготовки).

Δу вводится в расчет для того, чтобы при создании зубчатой передачи с колесами z1 и z2 было бы обеспечено зацепление этих колес без бокового зазора при стандартном радиальном зазоре.

2. Радиус окружности впадин rf.

rf = r – ha*m – c*m + xm (2)

3. Определение высоты зуба.

h = ra – rf = 2 ha*m + c*m – Δуm (3)

4. Определение коэффициента изменения толщины зуба.

Δ=2.x.tga

 

Глава 5. Специальные передаточные (планетарные) механизмы.

Планетарным называется механизм, имеющий в своем составе хотя бы одно звено с подвижной геометрической осью в пространстве.

Звено, имеющее подвижную геометрическую ось в пространстве, называется сателит.

Звено, на которое устанавливают ось сателитов, называется водило (Н).

Зубчатые колеса, имеющие неподвижную геометрическую ось в пространстве, называются центральными.

Центральное колесо, имеющее внешние зубья, называется солнечное колесо.

Центральное колесо, имеющие внутренние зубья, называется коронная шестерня (опорное колесо).

Достоинства планетарных передач:

1. имеют малые габариты и вес из-за того, что поток мощности, подводимый к центральному колесу, распределяется по к сателитам (к – количество сателитов). Затем поток мощности собирается на выходном звене. На одной планетарной передаче можно поставить до 24 сателитов.

2. очень высокий КПД, в среднем 0.99.

Недостатки:

Если число сателитов неравно 3, то необходим специальный механизм, который бы выравнивал нагрузку между сателитами. Этот механизм утяжеляет и удорожает конструкцию.

 

§5.1 Сравнительный анализ передачи с неподвижными осями планетарной передачи.

 

На первое колесо подается крутящий момент, а со второго снимают.



Ось В неподвижна Ось В подвижна

u1-2 = = u1-Н =

Через число зубьев u1-Н записать нельзя, т.к. ось В – подвижная ось.

Чтобы записать передаточное отношение через число зубьев, применим метод обращения движения:

мысленно сообщим всем звеньям механизма, включая стойку, дополнительное движение с угловой скоростью -wн. Получим обращенный планетарный механизм с неподвижными осями зубчатых колес.

В обращенном движении звенья этого механизма будут иметь следующие угловые скорости:

w1* = w1 – wН

w2* = w2 + (– wН) = w2 – wН

wН* = wН – wН = 0

- формула Виллиса

§5.2 Определение передаточного отношения планетарных механизмов различных схем.

5.2.1 Планетарный однорядный механизм (механизм Джеймса).

 

КПД в одном ряду – 0.99

Передаточное отношение можно определить:

1. графическим способом по чертежу;

2. аналитическим способом, используя формулу Виллиса.

Графический способ определения передаточного отношения.

Выберем на водиле Н точку F которая расположена на том же расстоянии от оси О2, что и точка А.

Оси О1 и О2 расположены на одном уровне.



Для данной схемы входное звено – звено 1 (солнечное колесо), выходным является водило Н.

Зададимся отрезком АА’, который изображает линейную скорость колеса 1 в точке А. Т.к. колесо 1 вращается вокруг О1, то закон распределения линейной скорости по первому звену изображается прямой линией О1А’. Сателит 2 в т.А имеет такую же линейную скорость, что и колесо 1. В т.С сателит 2 имеет МЦС в абсолютном движении, т.к. идет контакт с неподвижным колесом 3. Закон распределения линейной скорости по второму колесу изображается прямой линией СА’. В т.В сателит имеет линейную скорость, которая изображается отрезком ВВ’, однако т.В является также и осью водила Н, которое вращается вокруг О2. Следовательно, закон распределения линейной скорости по водилу изобразиться прямой линией О2В’. Для точки F водила линейная скорость изображается отрезком FF’.

От вертикали до линии распределения скоростей по водилу измеряем угол ψн, а от вертикали до линии распределения скоростей по колесу 1 измеряем угол ψ1. Т.к. углы ψ1 и ψн отложены от вертикали в одном направлении, то это показывает, что входное звено 1 и выходное звено вращаются в одном направлении.

Аналитический способ определения передаточного отношения.

Применим метод обращения движения, обратив планетарный механизм в непланетарный.

w1* = w1 – wН

w3* = w3 – wН = – wН

– плюсовой механизм.


Дата добавления: 2015-02-09; просмотров: 7; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Коэффициент удельного скольжения l. | Лекция 11. 5.2.2 Планетарный механизм со смешанным зацеплением
lektsii.com - Лекции.Ком - 2014-2019 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты