Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Технически оптимальная настройка регуляторов




Читайте также:
  1. IETM — Interactive Electronic Technical Manual Интерактивные электронные технические руководства
  2. VII. Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Технология» (направление «Технический труд»).
  3. Автоматические регуляторы. Определение закона регулирования регулятора (на примере САР теплообменника). Классификация линейных регуляторов. Нелинейный регулятор (пример)
  4. Агролесомелиоративные и гидротехнические мероприятия, направленные на снижение загрязнения окружающей среды.
  5. Агротехнические требования к боронованию
  6. Агротехнические требования к прикатыванию почвы
  7. Алгоритмы реализации МП-ых регуляторов
  8. Аудиовизуальные технологии в образовательном процессе. Технические средства обучения
  9. Билет №27. Оптимальная комбинация факторов производства. Принцип наименьших затрат.
  10. Будем понимать под АПК совокупность программно-технических средств, предназначенных для решения целевой задачи.

Для определения оптимальных параметров настройки регуляторов (параметрической оптимизации) АСР необходимо иметь сведения о статических и динамических характеристиках объекта регулирования и действующих возмущений. Наиболее достоверными являются экспериментально определенные статические характеристики.

Оптимальная настройка ПИД-регулятора позволяет максимально быстро и почти без перерегулирования вывести объект на уставку. Признак правильной настройки – плавный, без рывков, рост регулируемого параметра и наличие тормозящих импульсов при подходе к уставке как снизу, так и сверху.

Порядок определения оптимальной настройки ПИ-регулятора по графику временной характеристики за­мкнутой системы регулирования с помощью графиков заключается в следующем:

1. Система регулирования при произвольной настройке регулятора включается в работу. Убедившись, чтоона работает устойчиво, быстро изменяют задание регулятору на некоторую достаточно большую, но допустимую по условиям эксплуатации величину и регистрируют процесс изменения регулируемой величины во времени.

2. Из полученного графика изменения регулируемой величины, определяются степень затухания и период колебаний переходного процесса Т.

3. Вычислив величину отношения периода колебаний переходного процесса к установленному в регуляторе во время проведения эксперимента значению времени изодрома, находят величины поправочных множителей на величину коэффициента пере­дачи регулятора и на величину его времени изодрома, т.е. определяют, во сколько раз следует изменить чи­словые значения параметров настройки регулятора, чтобы настройка оказалась близкой к оптималь­ной.

4. Установив найденные параметры настройки в ре­гуляторе, опыт повторяют и производят повторный рас­чет, аналогичный изложенному выше. Если окажется, что числовые значения поправочных коэффициентов близки к единице (находятся в пределах 0,95–1,05), можно считать, что настройка окончена. В противном случае необходимо произвести повторную перена­стройку.

В практике наладочных работ используют приближенные формулы для определения оптимальных параметров настройки регуляторов для объектов, описываемых нижеприведенными выражениями при различных критериях оптимальности.



1. Всесоюзным теплотехническим институтом имени Ф.Э. Дзер­жинского (ВТИ)рекомендуются для степени затухания за период y = 0,75 и интегральной квадратичной оценки, близкой к минимуму при tоб/Та.

2. Имеются номограммы для подобных объектов, чтобы в зависимости от параметров объекта и заданного затухания определить Kр, Тиз (метод Ротача).

3. Существует метод компенсации большой постоянной времени объекта (Тиз = Тоб) при коэффициенте демпфирования x = 707 (модульный оптимум).

4. Аналитический расчет границы устойчивости и параметров регулятора при заданной степени колебательности по расширенным частотным характери­стикам (метод Стефани)также применяется при наличии ЭВМ и соответствую­щих методик расчета. Все методики дают близкие результаты расчета параметров регулятора и, соответственно, близкие переходные процессы.

5. На практике расчеты регуляторов заканчиваются наладочными работами, когда используются экспериментальные методы параметрической оптимизации.


Дата добавления: 2015-02-10; просмотров: 15; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.021 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты